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Recent contributions to the 2-D vortex method are presented. A technique to
accurately redistribute particles in the presence of bodies of general geometry is
developed. The particle strength exchange (PSE) scheme for diffusion is modified
for particles in the vicinity of the solid boundaries to avoid a spurious vorticity flux
during the convection/PSE step. The scheme used to enforce the no-slip condition
through the vorticity flux at the boundary is modified in a way that is more accurate
than in the previous method. Finally, to perform simulations with nonuniform res-
olution, a mapping of the redistribution lattice is also used. In that case, the PSE is
still done in the physical domain, using a symmetrized, conservative scheme. The
quadratic convergence of this scheme is proved mathematically, and numerical tests
are shown to support the proof. These elements are all validated on the benchmark
problem of the flow past an impulsively started cylinder. High-resolution, long-time
simulations of the flow past other bluff bodies are also presented: the case of a square
and of a capsule at angle of attack.c© 2000 Academic Press
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1. INTRODUCTION

In the past two decades, there have been significant developments in the field of vor-
tex methods: fast algorithms using multipole expansions (Greengard and Rohklin [6],
Barnes and Hut [2]) and active error control (Salmon and Warren [16], Winckelmanset al.
[19, 20]), accurate treatment of viscous effects using the particle strength exchange scheme
(PSE, Degond and Mas-Gallic [5]), and accurate enforcement of the viscous boundary con-
dition (Koumoutsakoset al.[8], Mas-Gallic [14a], Leonardet al.[12], Ploumhanset al.[15],
Benhaddouch [2a]). These elements have made the vortex method suitable for the compu-
tation of high-resolution simulations of flows with viscous boundaries. For instance, such
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computations were carried out by Koumoutsakos and Leonard [9] and by Koumoutsakos
and Shiels [10], who used the method to study impulsively started flows past a cylinder
and past a flat plate, respectively. So far, accurate simulations have only been achieved for
flows past bodies of particular geometry (e.g., the circular cylinder, the flat plate). Recently,
the use of a mapping was introduced in the vortex methods, allowing one to perform sim-
ulations with nonuniform spatial resolution (Cottetet al. [3], Lemine [11], and Cottet and
Koumoutsakos [4]).

In this paper, we present several new contributions to vortex methods aimed at the
high-resolution computation of flows past bluff bodies of general geometry. We also com-
bine these developments with the use of a mapping to perform simulations with nonuni-
form spatial resolution. In this case, the PSE is modified and is still done in physical
space.

The paper is organized into the following parts: The basic equations (Section 2), the 2-D
vortex method with its new developments (Section 3), the validation of these new devel-
opments for the flow past an impulsively started circular cylinder at uniform (Section 4)
and nonuniform (Section 5) resolutions, the computation of the flow past a square us-
ing two different nonuniform resolutions (Section 6), the simulation of the flow past a
body of nontrivial geometry (Section 7), and a simple approach to particle redistribution
in the presence of a body (Section 8). Appendix A provides the mathematical proof that
the modified PSE is convergent, and Appendix B provides numerical tests that support the
proof.

2. THE BASIC EQUATIONS FOR 2-D FLOWS

Two-dimensional incompressible flows are governed by the vorticity equation

Dω

Dt
= ∂ω

∂t
+ u · ∇ω = ν∇2ω, (1)

whereu(x, t) is the velocity field,ν is the kinematic viscosity, andω = ∇ × u = ω · ez is
the vorticity. In bluff-body flows, with the body translating with velocityUb(t) and rotating
around its center of mass,xb, with angular velocityÄ(t), the fluid velocity on the body
surface,xs, is equal to the velocity of the body,Us:

u(xs) = Us = Ub(t)+ ez× (xs− xb)Äb(t). (2)

At infinity, we have

u(x)→ U∞ as |x| → ∞, (3)

with U∞ the freestream velocity. For incompressible flows, the velocity can be expressed
as

u = ∇ ×ψ + U∞ (4)

with ψ = ψ · ez the stream function related toω by

∇2ψ = −ω. (5)
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3. THE VORTEX METHOD FOR 2-D FLOWS

The vorticity field is represented byN Lagrangian, scalar-valued, particles:

ω(x, t) =
N∑

i=1

ζi (x− xi )0i . (6)

Each particle is characterized by its position,xi (t), and its strength,0i (t), i.e., its circula-
tion, 0i =

∫
Si
ω dS=1 ωi Si , with Si the area of fluid associated with the particlei . The

distribution function,ζi , associated with a particle is defined by

ζi (x) = 1

σ 2
i

ζ

( |x|
σi

)
(7)

with σi the smoothing parameter. There are many possible choices for the functionζ (see,
e.g., Leonard [14], Winckelmans and Leonard [18]). In this paper, the Gaussian distribution
is used throughout:

ζ(ρ) = 1

2π
exp

(
−ρ

2

2

)
. (8)

The velocity at any positionx, computed fromω (Biot–Savart law), is

u(x, t) = −
N∑

j=1

q(|x− x j |/σ j )

|x− x j |2 (x− x j )× ez0 j (9)

with q(ρ) = ∫ ρ0 ζ(s)s ds(= 1
2π (1− exp(−ρ2/2)) for the Gaussian smoothing).

The way to handle viscous boundaries in the vortex method was originally developped by
Koumoutsakoset al.[8]. In the present paper, a modification of the method is presented that
is more accurate and also better suited to the computation of flows past bodies of general
geometry. A typical time step,1t , of the vortex method is divided into two substeps.

• In substep 1, the local velocity is computed and integrated with a second-order Adams–
Bashforth scheme to convect the particles (Section 3.1). Their strength is updated with a
modified particle strength exchange scheme (Section 3.2) that is integrated with an Euler
explicit scheme. This modified PSE guarantees a zero vorticity flux at the solid boundary
during substep 1. After this substep, a slip velocity,1Uslip, is present at the solid boundary.
Algorithmically, substep 1 is expressed as

xn+1
i = xn

i +1t

(
3

2
ui (xn, 0n)− 1

2
ui (xn−1, 0n−1)

)
(10)

0∗i = 0n
i +1t

d0i

dt

∣∣∣∣
PSE

(xn, 0n). (11)

• In substep 2, the vortex sheet,1γ , necessary on the body surface to cancel the slip
velocity generated by substep 1, is computed (Section 3.3). This vortex sheet corresponds
to a vorticity flux that must be emitted during a time1t (Section 3.4):

0n+1
i = 0∗i +1t

d0i

dt

∣∣∣∣
wall

(xn+1, 0∗). (12)
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Also, a redistribution scheme must be applied every few steps (Section 3.5) to maintain
spatial uniformity of the particle distribution and thus maintain the second-order spatial
accuracy of the method. After each particle redistribution, the new time step is done using
a second-order Runge–Kutta scheme; substep 1 becomes

xn+1/2
i = xn

i +1t ui (xn, 0n) (13)

0∗i = 0n
i +1t

d0i

dt

∣∣∣∣
PSE

(xn, 0n) (14)

xn+1
i = xn

i +
1

2
1t
(
ui (xn, 0n)+ ui

(
xn+1/2, 0∗

))
. (15)

Substep 2 is still given by Eq. (12).

3.1. Convection

Particle positions,xi (t), are governed by the equations

d

dt
xi (t) = u(xi (t), t), 1≤ i ≤ N, (16)

with

u(xi (t), t) = −
N∑

j=1

q(|xi − x j |/σi j )

|xi − x j |2 (xi − x j )× ez0 j , (17)

whereσ 2
i j = (σ 2

i + σ 2
j )/2. The use of the symmetrizedσ is needed for the convection step

to conserve the moments of order 0, 1, and 2 of the vorticity field (Leonard [13]). The
right-hand side of Eq. (17) is computed using a fast algorithm that has an operation count
of O(N log(N)) and with active error control based on accurate error bounds (Barnes and
Hut [2], Greengard and Rohklin [6], Salmon and Warren [16], Winckelmanset al.[19, 20]).

3.2. Diffusion with Zero Flux at the Wall

The treatment of diffusion is based on the technique of particle strength exchange (Degond
and Mas-Gallic [5]). In this algorithm, the Laplacian operator∇2 is approximated by an
integral operator,

∇2ω(x) ≈ 2

σ 2

∫
ησ (x− y) (ω(y)− ω(x)) dy, (18)

with ησ (x) = (1/σ 2)η(|x|/σ) andη(s) = − 1
s

d
dsζ(s). The Gaussian smoothing is such that

ησ = ζσ . The integral operator in Eq. (18) is discretized over the particles, and the evolution
equation for the particle strengths becomes

d0i

dt
= 2ν

σ 2

N∑
j=1

(Si0 j − Sj0i ) ησ (xi − x j )

' 2ν

σ 2

∑
j∈Pi

(Si0 j − Sj0i ) ησ (xi − x j ) . (19)
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In practice, the right-hand side of Eq. (19) does not involve a contribution from allN
particles, as the rapid decrease ofηmeans that only the particles close to particlei contribute
significantly tod0i /dt. The subset of particles that contribute significantly tod0i /dt is called
Pi . If the Gaussian smoothing is used,Pi consists, typically, of all the particles less than
5σ from xi . Whenσ is not the same for all particles, Eq. (19) is replaced by

d0i

dt
= 2ν

N∑
j=1

1

σ 2
i j

(Si0 j − Sj0i ) ηi j (xi − x j )

' 2ν
∑
j ∈Pi

1

σ 2
i j

(Si0 j − Sj0i ) ηi j (xi − x j ) (20)

with ηi j (xi − x j ) = (1/σ 2
i j )η(|xi − x j |/σi j ). As for the original PSE [5], this symmetrized

version of the PSE is still conservative:d
dt (
∑N

i=10i ) = 0. It is also still second-order accurate
providedσ varies smoothly in space (see Appendixes A and B). An alternative approach
is to do the PSE in a mapped domain as was done by Cottetet al. [3] and by Cottet and
Koumoutsakos [4].

If Eq. (20) is used for wall-bounded computations, the PSE is not complete: Particles
close to the wall are not completely surrounded by other particles. Consequently, a spurious
vorticity flux appears at the wall (although the total vorticity is conserved). In order to
complete the PSE, the present method uses image particles when computing the PSE for
particles close to the wall. This zeroes the vorticity flux at the wall (see Benhaddouch
[2a] for a modified PSE that allows one to enforce an arbitrary flux at the wall). Although
numerical tests have not shown that images definitely improve the accuracy of the method,
there are several reasons to use them:

• Early proofs of convergence of the vortex method in the presence of viscous boundaries
require a zero vorticity flux at the boundary during substep 1 (Eqs. (11) and (14)); see Cottet
and Koumoutsakos [4] and references therein.
• Images are necessary in 3-D to enforce the Dirichlet boundary condition on the normal

component of the vorticity (Ploumhanset al. [15]).
• Having a zero vorticity flux during substep 1 allows one to easily compare the circu-

lation produced by the vorticity flux on a part of the boundary for different methods (see
Sections 4 and 5).

The use of images is first explained on a normalized 1-D problem (see Fig. 1). Consider
a wall atx = 0. Particles are located atxj = j + 1

2 ( j ≥ 0) and have strengthsj . Image
particles have positionx′j = −xj and strengths′j = sj . Figure 1 illustrates the effect of the

FIG. 1. Use of PSE images in 1-D: particles (d) and images (s).
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FIG. 2. Use of PSE images in 2-D.

image particles for the modified PSE: They guarantee zero vorticity flux at the wall. Also,
because of the rapid decrease ofη, the influence of the images is only felt by the particles
close to the wall (typically, those withx < 5 if the Gaussian smoothing is used).

In 2-D, for obvious geometrical reasons, one cannot define a set of image particles as
easily as in 1-D. The technique is therefore slightly different (see Fig. 2). The computation
of the PSE for particlei involves two subsets of particles:Pi (the subset of particlesclose
enoughto xi ) andP ′i (the set of the images of the particles inPi ). If the particlei is such
thatxi is more thandcrit (typically 5σ for the Gaussian smoothing) from the body surface,
∂D, images have no effect ond0i /dt; soP ′i is empty. If xi is closer thandcrit from ∂D,
each particle inPi has an image particle inP ′i . If x j is the position of a particle inPi , x′j
represents the position of its image. This position is computed using symmetry; with the
axis of symmetry being the line tangent to∂D that contains the point of∂D closest toxi

(see Fig. 2). The strength (0′j ), surface (S′j ), and smoothing parameter (σ ′j ) associated with
an image particle are equal to those of the original particle. This technique is not affected
by curvature effects as long as the curvature radius is much larger than

√
ν1t , which is the

case in all well-resolved simulations (see Sections 4–7).
The 1-D image-modified PSE is conservative, as can be seen from Fig. 1. This result is

comforting since such a modified PSE indeed solves

∂ω

∂t
= ν ∂

2ω

∂x2
with

∂ω

∂x
= 0 at x = 0. (21)

The 2-D image-modified PSE should also be conservative. In practice, however, this is
not strictly the case: The sum

∑N
i=1 d0i /dt is not zero (although it is small compared to

( 1
N

∑N
i=1 (d0i /dt)2)1/2. This calls for a correction that will be applied when the vortex

sheet is computed (Section 3.3). In that way, the correction will only affect particles close
to the wall, not the entire flow.

3.3. Computation of the Vortex Sheet

After we convect the particles with the local velocity and update their strength according
to the modified PSE, there is a slip velocity,1Uslip, at the wall. The vortex sheet,1γ ,
necessary on the body surface to cancel this slip velocity is then computed using the boundary
element method. The body surface is discretized usingM boundary elements (i.e., “vortex
sheet panels”), each of sizeO(h) (with h the typical distance between particles in the
vicinity of the body) and each of uniform strength. For each computational panel on the
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body, the slip velocity underneath that panel is taken as the average, over the panel, of
the slip velocity induced by the freestream and by all vortex particles which, for this step
only, are considered as point vortices (to ensure that all the vorticity is indeed outside
of the body). In 2-D, this can be done directly from the Green’s function integral for
the velocity potential induced by the freestream and by the point vortices (Koumoutsakos
[7]). It can also be evaluated numerically, by integrating, with some appropriate numerical
quadrature (e.g., Gauss quadrature), the slip velocity obtained from the fast algorithm. This
later approach, although slightly less accurate than the first one, has a direct extension to 3-D.
Once the panel-averaged slip velocity,1Uslip, has been evaluated for all panels, computing
the panel strengths to cancel the slip velocity amounts to solving a linear system. This is so
because, in addition to inducing a uniform tangential velocity underneath themselves (equal
to n× ez1γ/2), the panels also induce a tangential velocity on one another. Notice that the
tangential velocity induced by one panel on another is also averaged over that panel, using
the same numerical quadrature as above.

An integral constraint,∮
1γ (s) ds= −2AB[Ä(t +1t)−Ä(t)], (22)

with AB the surface of the body, has to be imposed on the strength of the vortex sheet
(Koumoutsakoset al. [8]). If Eq. (22) is discretized on the panels, it becomes

M∑
i=1

1γi bi = −2AB[Ä(t +1t)−Ä(t)], (23)

with 1γi the strength of paneli , andbi its length. To take into account the fact that the
image-modified PSE is not exactly conservative, Eq. (23) is here replaced by

M∑
i=1

1γi bi = −2ABÄ(t +1t)−
N∑

i=1

0∗i , (24)

with0∗i the strength of the particle after use of the modified PSE. There are thusM + 1 equa-
tions, withM unknowns. This overdetermined system is solved in the least-squares senses,
but the constraint (24) is enforced exactly, using the technique of Lagrange multipliers.

3.4. Vortex Sheet Diffusion

The total flux to be emitted into the flow for the other substep of the diffusion process is
given by

ν
∂ω

∂n
= 1γ

1t
. (25)

This flux must be emitted during a time1t . In effect, the vortex sheet1γ must be dis-
tributed to neighbor particles by discretizing the Green’s integral for the inhomogeneous
Neumann problem corresponding to the diffusion equation. See Koumoutsakoset al. [8]
for a simple scheme in 2-D (referred to hereafter as scheme K). Winckelmans (1993, pri-
vate communication), Leonardet al. [12], and Ploumhanset al. [15] have proposed a more
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FIG. 3. Panel to particles diffusion: particles on a regular lattice aligned with the panel (left); particles with
arbitrary position with respect to the panel (right).

accurate scheme (scheme W). Consider a panel of uniform strength1γ located along the
y-axis, from−b/2 to b/2, and diffusing to the right (the left being the body into which
the vortex sheet does not diffuse), as shown in Fig. 3. The amount of circulation,10i , that
must be received by the particle located atxi > 0, yi (any sign), is given by

10i =
∫ xi+hi /2

xi−hi /2

∫ yi+hi /2

yi−hi /2
1ω dx dy (26)

with h2
i = Si the fluid area associated with particlei .1ω stands for the change in vorticity

due to the flux from the panel acting over a time1t and is itself the result of a time integral,

1ω =
∫ 1t

0

dω

dt
dt, (27)

with

dω

dt
= 1γ

1t

1√
π

1√
4νt

exp

(
− x2

4νt

)
[erfc(s)](y−b/2)/

√
4νt

(y+b/2)/
√

4νt
, (28)

where erfc(s) = ∫∞s 2√
π

exp(−v2) dv. The amount of circulation received by the particlei
is

10i =
∫ 1t

0

d0i

dt
dt, (29)

where

d0i

dt
=
∫ ∫

dω

dt
dx dy. (30)

In scheme K, Eqs. (29) and (30) are integrated numerically using the mid-point rule:

10i = Si1γ
1√

2ν1t

1√
π

exp

(
− x2

i

2ν1t

)
[erfc(s)](yi−b/2)/

√
2ν1t

(yi+b/2)/
√

2ν1t
. (31)
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TABLE I

Panel to Particles Diffusion

with K Scheme

h2/(4ν1t) (
∑

i10i )/(b1γ )

1/4 1.000
1/2 0.999
1 0.986
2 0.881
4 0.592

Because the spatial integration is done numerically, this scheme is not conservative; i.e.,
1γ is not exactly distributed to the particles (b1γ 6=∑i 10i ). Table I contains the values
of the ratio

∑
i 10i /(b1γ ) for differenth2/(4ν1t). It is seen that scheme K becomes less

and less conservative ash2/(4ν1t) increases.
In scheme W, the integral in Eq. (30) is performed exactly, giving

d0i

dt
=
∫ ∫

dω

dt
dx dy= 1γ

1t

(
[erfc(s)](xi−hi,l /2)/

√
4νt

(xi+hi /2)/
√

4νt

)
·
(√

4νt
1

2

(
[ierfc(s)]((yi−b/2)−hi /2)/

√
4νt

((yi−b/2)+hi /2)/
√

4νt
− [ierfc(s)]((yi+b/2)−hi /2)/

√
4νt

((yi+b/2)+hi /2)/
√

4νt

))
, (32)

where ierfc(s) = ∫∞s erfc(v) dv = 1√
π

exp(−s2)− serfc(s). Notice thathi,l/2= xi if 0 ≤
xi < hi and hi,l/2= hi /2 otherwise. This allows for particles in the “first layer” to be
closer to or further away from they-axis thanhi /2 and it ensures that the scheme remains
conservative in such cases. The time integral in Eq. (29) is evaluated using Gauss quadrature
(3 or 4 points).

If particles are on a regular lattice aligned with the panel, scheme W is always conserva-
tive. It could thus also be used to perform under-resolved computations, where the value of
h2/(4ν1t)would be very high. In practice, however, the spatial distribution of the particles
is not well aligned with the vortex panel (see Fig. 3): The proposed scheme is then not
exactly conservative. To enforce conservation, the following correction is made: Instead of
using10i given by Eqs. (29) and (32), one uses

10i,conserv= 10i + (10i )
2∑

j (10 j )2

(
b1γ −

∑
j

10 j

)
, (33)

where j runs over all particles concerned by the panel1γ . This scheme minimizes∑
i (10i −10i,conserv)

2/(10i )
2 with the constraint that(b1γ )− (∑i10i,conserv) = 0.

For diffusion with the above schemes to work properly, the spatial distribution of the
particles must remain fairly uniform. This is one reason particle redistribution is needed
every 5 to 10 time steps. Of course, as in vortex methods without solid boundaries, it is also
needed to minimize the PSE and convection errors.

Comparison of schemes K and W.Schemes K and W (this one used together with
Eq. (33)) are now compared for the first time steps of the simulation of an impulsively
started circular cylinder, at Re= U∞D/ν = 550. The particles are initially set on a lattice
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FIG. 4. The KL redistribution technique (left), and the general one (right).

that follows the boundary (Fig. 4), andh2/(4ν1t) = 1/2. The other relevant parameters
of this simulation are given in Section 4.1. Figure 5 compares the linear impulse,Ix =∫
Ä

yω dÄ =∑p yp0p, obtained with the two schemes with an analytical solution valid
for short times [1]. It is seen that, for this flow and with particles following the boundary,
both schemes give accurate results, with scheme W performing slightly better.

3.5. Particle Redistribution

In accurate particle methods for direct numerical simulation (DNS) of viscous flows,
one needs to maintain the condition that particle cores overlap. This calls for a particle
redistribution scheme. It consists in replacing the distorted set of vortex particles by a
new set where the particles are, again, located on anh× h lattice. If σ is not the same
for each particle, the redistribution is performed in a mapped domain (see Section 3.6) in

FIG. 5. Ix comparison for short times for an impulsively started circular cylinder, at Re= 550: analytical
(solid line), W scheme (e), K scheme (×).
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which particles are located on a 1× 1 mapped lattice after redistribution. Consider first the
normalized 1-D problem with unit spacing. In the33(x) scheme (that conserves up to order
p = 3 of the vorticity distribution; recall thatp = 0 is the circulation,p = 1 is the linear
impulse, andp = 2 is the angular impulse), an old particle located at−1/2≤ x ≤ 1/2
gives

(3− 2x)(4x2− 1)/48 to the new particle located at−3/2

(1− 2x)(9− 4x2)/16 to the new particle located at−1/2
(34)

(1+ 2x)(9− 4x2)/16 to the new particle located at 1/2

(3+ 2x)(4x2− 1)/48 to the new particle located at 3/2.

If a wall is present, the redistribution of particles close to the wall must be modified,
because particles are not allowed inside the body. This is achieved by using decentered3′p
schemes. Two such schemes are detailed here, considering that an old particle is located at
− 1

2 ≤ x ≤ 1
2 and that the wall is atx = − 1

2 for the3′2 scheme and atx = −1 for the3′3
scheme:

3′2(x) gives


(x − 2)(x − 1)/2 to the new particle located at 0

x(2− x) to the new particle located at 1

x(x − 1)/2 to the new particle located at 2

(35)

3′3(x) gives


(1− 2x)(2x − 5)(2x − 3)/48 to the new particle located at−1/2

(2x − 5)(2x − 3)(1+ 2x)/16 to the new particle located at 1/2

(1− 2x)(2x − 5)(1+ 2x)/16 to the new particle located at 3/2

(1− 2x)(3− 2x)(1+ 2x)/48 to the new particle located at 5/2.

(36)

In the present approach, a33 scheme is used for particles located more than 3/2 from the
wall, a3′3 scheme for particles with distance between 1/2 and 3/2, and a3′2 scheme for
particles less than 1/2 from the wall.

In 2-D, the problem of deciding which scheme to use near the boundaries is more involved
because, in general, the boundary crosses the redistribution lattice in an arbitrary way.
Two steps are used. First, an old particle is redistributed in thex-direction and temporary
particles are created. A33 scheme is used if it is possible (that is, if it doesn’t introduce
particles inside the body); if not, a3′3 scheme is used and if it still leads to the creation
of particles inside the body, a3′2 scheme is chosen. This redistribution in thex-direction has
thus created four (33 or3′3) or three (3′2) temporary particles. Each temporary particle is
then redistributed in they-direction using, in order of preference, a33,3′3, or3′2 scheme.
Note that the scheme used in they-direction is not necessarily the same for each temporary
particle. A penaltypi is given to each new particle, with

pi =


0 if only centered schemes were used
1 if a3′p scheme was used for thex- or they-direction
2 if 3′p schemes were used for both thex- andy-directions.



VISCOUS FLOW PAST BLUFF BODIES 365

FIG. 6. 2-D redistribution schemes:33 for point A;333
′
33
′
2 for point B.

This leads to the creation ofNnp new particles. A global penalty is then computed:

PXY =
∑Nnp

i=1 pi

Nnp
. (37)

In a second step, the global penaltyPY X, obtained when doing the redistribution first in the
y-direction and then in thex-direction, is computed. In the end, the order of redistribution
chosen is the one that leads to the lowest global penalty. IfPXY = PY X, an average of the
two schemes is used.

Figure 6 gives an example of the333
′
33
′
2 redistribution scheme. ParticleA is far from

the walls, so a33 scheme is used in both directions. ParticleB is close enough to the
wall that decentered schemes have to be used: One hasPXY = 20

16 and PY X = 11
15, so the

redistribution proceeds first in they-direction and then in thex-direction.
The surface,Si = h2

i , of each particle in the new set is determined by the mapping (see
Section 3.6). The smoothing parameter is taken asσi = βhi with β the core overlapping
parameter (typically,β = 1 for the Gaussian as defined in Eq. (8)). For particles close to
the body, the surface is “corrected” to take into account the fact that part of the areaSi

associated to particlei is “inside” the body.

3.6. Redistribution with Mapping of the Physical Domain

In external flows, the vorticity is located in the boundary layer and in the wake, with
the magnitude of the vorticity decreasing as one goes downstream. Thus it would be more
efficient to have high resolution near the body and coarser resolution in the far wake. To
achieve this, the physical domain, with spatially varying resolution, is mapped onto a regular
indicial lattice(i, j ) (Cottetet al.[3], Lemine [11], Cottet and Koumoutsakos [4]). Different
mappings can be considered. One example is the exponential mapping given by

x = x0+ r (i ) cosθ( j )
(38)

y = y0+ r (i ) sinθ( j )
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with θ( j ) = 2π
m j , 0≤ j ≤ m, andr (i ) = R0 f (i ), i ≥ 0. The functionf (i ) is chosen such

that all cells are “almost” square:

r dθ = dr when di = d j. (39)

This leads to the following expression forf (i ):

f (i ) = exp

(
2π

m
i

)
. (40)

After each redistribution, new particles in the mapped domain have position(i + 1/2, j +
1/2) and the corresponding positions obtained from Eqs. (38) and (40) in the physical
domain. The fluid area associated with the particle is

S=
∫ ∫

r dθ dr =
∫ i+1

i

∫ j+1

j
r

dθ

d j
d j

dr

di
di

= π

m
R2

0

(
exp

(
4π

m
(i + 1)

)
− exp

(
4π

m
i

))
(41)

= sinh(2π/m)

(2π/m)

((
2π

m
R0

)
· exp

(
2π

m
(i + 1/2)

))2

. (42)

Notice that, for small 2π/m, this further reduces to

S= h2 '
((

2π

m
R0

)
· exp

(
2π

m
(i + 1/2)

))2

(43)

and thus

h '
(

2π

m
R0

)
· exp

(
2π

m
(i + 1/2)

)
. (44)

The smoothing parameter,σ , associated to the particle is given by

σ(i ) = βh, (45)

whereβ is the core overlapping parameter (which is the same for all particles). For the
Gaussian,β = 1 is used.

The use of this mapping produces aσ that varies smoothly in space (so that Eq. (20) can
be used safely, preserving second-order accuracy of the PSE; see Appendixes A and B).

3.7. Quality Criterion for a Vortex Simulation

To gauge the quality of a numerical simulation, one has to consider the “mesh” Reynolds
number. In vortex methods, it is natural to use the “mesh” Reynolds number based on
vorticity:

Reh = |ω| h
2

ν
. (46)
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A well-resolved simulation is one such that

Reh = O(1), (47)

as this ensures that the relevant viscous scales present in the flow are resolved.
To accurately resolve the diffusion phenomena, it is required to have

ν1t

h2
= O(1). (48)

Multiplying Eq. (47) by Eq. (48), one finds that

|ω|1t = O(1). (49)

This basically ensures that particles do not rotate too much with respect to each other (recall
thatω/2 is the rotation of a fluid element).

The PSE is also subjected to a stability constraint that requires that

ν1t

σ 2
< φ, (50)

whereφ depends on the smoothing function, the core overlapping parameter,β, and the
scheme used for the time integration.

It is possible to carry out an analysis of the stability of the PSE and to find a lower bound
onφ (hereafter referred to asφ∗). For the Gaussian, withβ = 1, one finds:

• for the Euler explicit scheme,φ∗ = 0.595,
• for the Adams–Bashforth 2 scheme,φ∗ = 0.297.

4. FLOW PAST AN IMPULSIVELY STARTED CYLINDER AT UNIFORM RESOLUTION

In this section, the general method, with uniform spatial resolutionh, is tested on the flow
past an impulsively started cylinder. This flow is interesting because: (1) it is a benchmark
for bluff body flows; (2) there exists an analytical solution valid for short times (Bar-Lev and
Yang [1]); and (3) this flow has been extensively studied by Koumoutsakos and Leonard
[9], using a vortex method, but with a redistribution technique specifically designed for
the circle, who showed that the vortex method compared very well with other numerical
techniques on that flow.

Figure 4 shows the difference between the KL-like approach and the general method. In
the KL-like method, the particles are initially (and also after each redistribution) located in
a way that “follows” the boundary, but each particle still has an area ofh2 associated with
it. This is clearly the best one can do to obtain accurate results for the flow past the cylinder.
However, it cannot be extended to general geometries.

A redistribution technique similar to what was used in KL has been implemented, in
order to have a “KL-like reference” solution for long times. Redistribution is done with a
33 scheme in theθ -direction and with, in order of preference, a33,3′3, or3′2 scheme in the
r -direction. Notice that, in all that follows, “KL-like” is used to refer to a “Koumoutsakos–
Leonard-like” method, even though it was here improved using (1) the modified PSE
(Section 3.2), and (2) the more accurate wall vorticity flux (Sections 3.3 and 3.4).
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Two sets of simulations were carried out: the first one corresponds to a Reynolds number
Re= U∞D/ν = 550, and the second one to Re= 3000. Also, several variations of the
method presented in the previous sections were tested:

• the use of random “vibrations”: at each redistribution, the center of the “redistribution
lattice” is chosen randomly in [−h/2; h/2]× [−h/2; h/2];
• the use of a “halo” around the body: at each redistribution, when particles are redis-

tributed on a regularh× h lattice, a minimal distance,dhalo, between a new particle and the
body surface is required;
• the combination of the two methods above.

Hereafter, the general method and its three variations will be referred to as G, G+ V, G+
H, and G+ H + V, respectively.

Different comparisons are made as a function ofT = tU∞/D: thex-component of mo-
mentum,Ix =

∫
Ä

yω dÄ =∑p yp0p, and the drag coefficient,CD = Fx/
1
2ρU2

∞D with
Fx = −ρ d Ix/dt, whered Ix/dt ≈ (Ix(t +1t)− Ix(t −1t))/(21t) (in order to avoid
spurious noise due to redistributions, theIx curve is filtered using a 5-point moving av-
erage before the numerical differenciation). It is also of interest to compare the production
of circulation from the upper part of the cylinder,d0up/dt = νR

∫ π
0
∂ω
∂r dθ . This can be

easily obtained from the computed panel values only, Eq. (25), since, in our method, the
use of PSE images guarantees a zero vorticity flux during the PSE step. In some cases, the
production of circulation has revealed itself as a better diagnostic than the drag coefficient
for the comparison of the different schemes. Isocontours of vorticity are also compared.
Finally, we compare the values of the panels’ strength. This is a very tough compari-
son, as it concerns the vorticity flux at the boundary. The general method exhibits a high-
frequency noise in the vorticity flux, and the comparison is thus also carried out in the Fourier
domain.

4.1. Re= 550

The parameters of the simulation are1T = 0.01 andh/D = 6.03× 10−3. Gaussian
particles are used, withβ = σ/h = 1. Redistribution is done every five time steps. If a
new particle has|0i | < 0.001|0i |max, it is deleted (in order to avoid too high a growth rate
for the number of particles), and the loss of circulation,0i , is redistributed equally among
the remaining particles. The presence of 10 layers of particles around the body is also
enforced after each redistribution. When a “halo” is used,dhalo= b/4, with b the length
of a panel. There areM = 592 panels. Thusb/D = π/592= 5.31× 10−3. In the KL-like
method, this corresponds, for the first layer of particles after redistribution, to one particle
in front of each panel. The area associated with these particles is thenS= 3.63× 10−5,
the square root of which is equal toh = √S= 6.03× 10−3. Equation (29) is integrated
with four Gauss points. The integration scheme for convection is a second-order Adams–
Bashforth (second-order Runge–Kutta for the first step and after each redistribution); for
PSE diffusion, a first-order Euler explicit scheme is used. A fast tree code is used, with
multipole expansions of third order. The mean error estimate (on the norm of the velocity)
is∼3× 10−3U∞, the number of particles goes from∼5000 to∼70,000 during the course
of the simulation, and the total run time is∼3 h on a DEC alpha running at 433 Mhz.

Figure 7 shows a comparison between the analytical expression ofIx for short times and
Ix computed with the different methods. In this figure, the KL-like method gives the results
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FIG. 7. Ix comparison for an impulsively started circular cylinder, at Re= 550. Short time (top): analytical
(solid line), KL-like (e), G (+), G+ V (h), G+ H (s), G+ H + V (4). Long time (bottom): KL-like (solid
line), G+ V (dashed line).

closest to the analytical prediction; the methods G and G+ V give almost identical results,
which are not quite as good as those obtained using the KL-like approach. This, of course,
is to be expected, as the same resolution was used for a body-fitted method versus a general,
non-body-fitted method. The methods G+ H and G+ H + V also give almost identical
results, but these are not as good as those of the three other methods. WhenIx is compared
for longer times, all five methods give results that cannot be distinguished (thus, for clarity,
only the results from the KL and G+ V methods have been shown in Fig. 7).

A comparison of the drag coefficient,CD, is shown in Fig. 8. Since all five approaches
give almost identical results, not all results are shown in Fig. 8. It is interesting to zoom in
on the parts of the graph corresponding to local extrema of the drag coefficients. The graphs
of Fig. 9 show that the methods G and G+ V give results closer to those of the KL-like
method. Also, the G+ V and G+ H + V methods exhibit somewhat higher noise levels.

Figure 10 illustrates the fact that half the total production of circulation,d0up/dt, allows
a better distinction between the different methods than the drag coefficient. It is calculated
directly by summing the strengths of half the panels. To smooth out high-frequency noise
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FIG. 8. CD comparison for an impulsively started circular cylinder, at Re= 550. Short time (top): analytical
(solid line), KL-like (e), G (+), G+ V (h). Long time (bottom): KL-like (solid line), G+ V (dashed line).

due to redistribution, this curve is filtered using a five-point moving average. Figure 11
focuses on the parts of Fig. 10 where the methods differ most. From Figs. 10 and 11, it
is seen that the G+ V method is the one that gives results closest to those of the KL-like
method.

Figure 12 shows a comparison of iso contours of vorticity for the KL-like and G+ V
approaches. The agreement between these techniques is very good, although the minimum
and maximum value ofω are slightly different (because they correspond to particles very
close to the wall). Also, a small asymmetry is present in the minimum and maximum values
of the vorticity for the methods using small random “vibrations” of the redistribution lattice
(G+ V and G+ H + V). Short-wavelength oscillations in the low-value iso contours are
present at positions where the contours come very close to the region with no particles.

Figure 13 compares the 16 first modes of the vortex sheet’s strength,1γ , at T = 1 and
T = 5 for the KL-like and G+ V methods. It also shows the “filtered” strength of the
vortex sheet (obtained through an inverse Fourier transform of the 16 first modes) at the
same times. The agreement between the two methods is seen to be quite good; the small
differences are more noticeable at the local extrema.
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FIG. 9. CD comparison for an impulsively started circular cylinder, at Re= 550: KL-like (solid line),
G (dotted line), G+ V (dashed line), G+ H (dot-dashed line), G+ H + V (long dashed line).
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FIG. 10. d0up/dt comparison for an impulsively started circular cylinder, at Re= 550: KL-like (solid line),
G (dotted line), G+ V (dashed line), G+ H (dot-dashed line), G+ H + V (long dashed line).
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FIG. 11. d0up/dt comparison for an impulsively started circular cylinder, at Re= 550: KL-like (solid line),
G (dotted line), G+ V (dashed line), G+ H (dot-dashed line), G+ H + V (long dashed line).

As mentioned above, our general method cannot, at the same resolution (h, b), be expected
to be as good as the body-fitted method. A convergence analysis of the G+ V method is
thus carried out. Two simulations of the same flow are made: one ath/D = 6.03× 10−3,
1T = 0.01, and one ath/D = 3.015× 10−3, 1T = 0.025. Thus, both have the same
ν1t/h2 = 1/2. Figure 14 shows that the G+ V method indeed converges well: The values
of Ix andCD obtained with the smallerh/D are remarkably close to the analytical values.
The other schemes were also tested and shown to converge.

4.2. Re= 3000

The parameters of the simulations are1T = 0.005 andh/D = 1.87× 10−3. There are
1944 panels, the number of particles goes from∼20,000 to∼500,000, and the total run
time is approximately 60 h on a DEC alpha running at 533 Mhz.

The short-time comparison ofIx indicates, once again, that, at the same resolution (h, b),
the body-fitted KL-like method works slightly better and that the G and G+ V methods
work better than the G+H and G+H+V ones. For longer times, all four general methods
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FIG. 12. Iso contours of vorticity forT = 1, 3, and 5 for an impulsively started circular cylinder, at Re= 550:
KL-like (left), G + V (right). Levels are by steps of 2 (zero level is skipped).

work equally well, so only the results from the G+ V method are shown in Fig. 15, along
with those obtained using the KL-like method.

Figure 16 illustrates the results for the drag coefficient,CD. Once again, the results of
all four general methods are very similar. However, for Re= 3000, there are slight but
noticeable differences in the long-timeCD computed with the KL-like and G+ V methods.

Half the total production of circulation (Fig. 17) does not allow us to distinguish the
different method as easily as for the Re= 550 case. There are, however, small differences
that seem to indicate that the G+ V method works best, but it is not as clear as for the
Re= 550 case. The G and G+ H methods give results very similar and are not shown.

Figure 18 shows a comparison of the iso contours of vorticity for the KL-like and
G+ V methods. Although the agreement is very good, there are some differences between
the two methods, and they increase with time.

Figure 19 compares the 48 first modes of the vortex sheet’s strength,1γ , at T = 1 and
T = 5 for the KL-like and G+V methods. It also shows the “filtered” strength of the vortex
sheet (obtained through an inverse Fourier transform of the 48 first coefficients) at the same
times. The agreement between the two methods is very good; the small differences are more
noticeable at the local extrema.



374 PLOUMHANS AND WINCKELMANS

0 4 8 12 16
0

1

2

3

4

5

6

7

F
{∆

γ}

k

0 4 8 12 16
0

1

2

3

4

F
{∆

γ}

k

0.0 0.5 1.0 1.5 2.0
 -0.04

 -0.02

0.00

0.02

0.04

θ/π

∆γ

0.0 0.5 1.0 1.5 2.0
 -0.04 

 -0.02

0.00

0.02

0.04

θ/π

∆γ

FIG. 13. Comparison of the vortex sheet’s strength for an impulsively started circular cylinder, at Re= 550:
16 first Fourier coefficients atT = 1 (top left) andT = 5 (top right), KL-like (e) and G+ V (h); filtered strength
of the vortex sheet as a function ofθ/π at T = 1 (top left) andT = 5 (top right): KL-like (solid line) and G+ V
(dashed line).

5. FLOW PAST AN IMPULSIVELY STARTED CYLINDER

AT NONUNIFORM RESOLUTION

The aim of this section is to validate the “adaptive” part of the vortex method, that is,
the fact that particles having, at each redistribution, a fluid areaS= h2 and a smoothing
parameterσ = βh, varying slowly in space, allow one to perform an accurate simulation
at a reduced computational cost. To concentrate on only that part of the validation study,
one has to consider the flow past a circular cylinder together with the exponential mapping,
with the center of the mapping being located at the center of the cylinder. This is thus a
KL-like method but with nonuniform resolution.

Two sets of simulations have been performed: Re= 550 and Re= 3000. For each set,
the linear impulse,Ix, the drag coefficient,CD, the half total production of circulation,
d0up/dt, and the iso contours are compared with the results from the KL-like method with
uniform resolution.

5.1. Re= 550

The parameterm for the exponential mapping ism= 592, that is, the number of panels.
All the other parameters are the same as those used in Section 4.1.

Figures 20 and 21 show that the nonuniform method gives results very similar to those
obtained with uniform resolution. The evolution of the number of particles in the two
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FIG. 14. Convergence ofIx for the G+ V approach (top) and ofCD (bottom) for an impulsively started
circular cylinder, at Re= 550: analytical (solid line),h/D = 6.03× 10−3,1T = 0.01(+); h/D = 3.015× 10−3,
1T = 0.025(∗).

methods is shown in Fig. 28. For longer times, theIx andCD curves, although very close,
show some differences. In fact, the uniform-resolution G+ V method (Section 4.1) gives
slightly better long-time results than the nonuniform KL-like method. This is due to the
decreasing resolution as one goes downstream. The half total production of circulation is
shown (Fig. 22) to give very similar results whether one uses the uniform or the nonuniform
KL-like method. In this regard, the results from the nonuniform KL-like method are slightly
better than those of the uniform G+V method. This is due to the way particles are arranged
near the body. In the KL-like methods, particles “follow” the body. The particles from the
“first layer” are at a distanceh/2 from the body surface, and the vortex sheet generated
at the surface,1γ , is a smooth function. In the general redistribution methods, however,
particles may come very close to the wall. This leads to a1γ that is noisier. Sinced0up/dt
is directly computed from1γ (and is thus a “local” rather than “global” diagnostic), it
explains why the KL-like methods, even with a coarser resolution downstream, give better
results for the half total production of circulation. Figure 23 shows that the iso contours of
the uniform and nonuniform KL-like methods compare very well.
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FIG. 15. Ix comparison for an impulsively started circular cylinder, at Re= 3000. Short time (top): analytical
(solid line), KL-like (e), G (+), G+ V (h), G+ H (s), G+ H + V (4). Long time (bottom): KL-like (solid
line), G+ V (dashed line).

5.2. Re= 3000

This time, the parameterm equal to the number of panels ism= 1944. All other param-
eters are the same as those used in Section 4.2.

Figures 24, 25, 26, and 27 illustrate the performances of the nonuniform method at
Re= 3000. The conclusions are similar to those presented in Section 5.1. The main point
of interest of the nonuniform method—its use of much fewer particles for a similar accuracy
in the vicinity of the body—is illustrated in Fig. 28.

6. FLOW PAST AN IMPULSIVELY STARTED SQUARE

AT NONUNIFORM RESOLUTION

In this section, the flow past an impulsively started square at an angle of attack,α = 15◦,
is computed, taking advantages of both the general redistribution technique, which allows
one to redistribute particles near bodies of general geometry, and the nonuniform scheme.
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FIG. 16. CD comparison for an impulsively started circular cylinder, at Re= 3000. Short time (top): analytical
(solid line), KL-like (e), G (+), G+ V (h). Long time (bottom): KL-like (solid line), G+ V (dashed line).
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FIG. 17. d0up/dt comparison for an impulsively started circular cylinder, at Re= 3000: KL-like (solid line),
G+ V (dashed line), G+ H + V (long dashed line).
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FIG. 18. Iso contours of vorticity forT = 1, 2, 3, and 4 for an impulsively started circular cylinder, at
Re= 3000: KL-like (left), G+ V (right). Levels are by steps of 4 (zero level is skipped).

The combination of these two powerful techniques makes it possible to compute this flow
up to times that a uniform-resolution technique could not reach.

Two runs of this flow were performed. Both correspond to a Reynolds number Re=
U∞c/ν = 100, wherec is the length of a side of the square, but the parametersx0, y0, and
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FIG. 19. Comparison of the vortex sheet’s strength for an impulsively started circular cylinder, at Re= 3000:
48 first Fourier coefficients atT = 1 (top left) andT = 5 (top right), KL-like (e) and G+ V (h); filtered strength
of the vortex sheet as a function ofθ/π at T = 1 (top left) andT = 5 (top right): KL-like (solid line) and G+ V
(dashed line).

mof the mapping are different. These three parameters enable one to control the variation of
the resolution in space. Indeed, the typical distance between particles,h, varies ash = 2π

m r ,
wherer 2 = (x − x0)

2+ (y− y0)
2. The first run, hereafter referred to asS1, hasm= 300

and(x0, y0) = (0, 0). For the second run,S2, the values of these parameters arem= 850
and(x0, y0) = (−2.5,−0.67). Both runs haveR0 = 0.5. These two mappings lead to the
same value ofh at the lower-left corner of the square,(−0.5,−0.5). Figure 29 illustrates
the two mappings corresponding toS1 andS2, where, for clarity of the figure, the values
of m have been divided by 2. Figure 30 shows the position of particles atT = 0 and the
cells of the mapping (this time with the true values ofm). The other parameters, common
to S1 andS2, are1T = 0.01 and the use of Gaussian particles withβ = 1. Each side of the
square is divided into 72 panels. However, the corners of the square have to be “rounded”
to avoid numerical problems. This is done by replacing the two panels at a corner by four
smaller panels whose ends are on a circle of radius equal to the length of a panel.

For the panels to be able to diffuse their vorticity correctly it is essential to have enough
particles around the body during the course of the simulation. The presence of a layer of
nl particles is enforced after each redistribution and also before the first time step in the
following way: For each position(i, j ) of the redistribution lattice in the mapped domain,
a square centered at(i, j ) and of side of length 2nl + 1 is considered. If any position
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FIG. 20. Ix comparison for an impulsively started circular cylinder, at Re= 550. Short time (top): analytical
(solid line), uniform KL-like (e), nonuniform KL-like (×). Long time (bottom): uniform KL-like (solid line),
nonuniform KL-like (dashed line).

(i + k, j + l ), with (k, l ) in [−nl , nl ] × [−nl , nl ], falls inside the body, the presence of a
particle at position(i, j ) is guaranteed.

A redistribution is performed every five time steps, and the presence of a layer of 10
particles around the body is enforced. When one uses the nonuniform scheme for long-time
computations, it is no longer valid to delete new particles with|0| < ε|0|max, because,
for long-time simulations,|0|max corresponds to a particle located in the far wake, whose
circulation might be very large because the surface associated with that particle is very large.
A better approach consists in deleting all particles with|0| < ε|0|max and|0| < 0trsh (i.e.,
satisfy both a relative criterion and an absolute criterion). For short times, the first criterion
will be effective, and for long times, it is the second one that will come into play. To choose an
appropriate value for0trsh, one has to consider the mesh Reynolds number based on vorticity:
Reh = |ω|h2/ν. Since particle strengths correspond to0 = ωh2, we have Reh = |0|ν . Tests
have shown that a “good” value for0trsh corresponds to Reh,trsh= 0trsh/ν = 10−4. Thus,
particles for which the “mesh” Reynolds number is really very low are deleted. ForS1 and
S2, the values0trsh= 10−4 ν andε = 10−4 were used. All the others parameters are similar
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FIG. 21. CD comparison for an impulsively started circular cylinder, at Re= 550. Short time (top): analytical
(solid line), uniform KL-like (e), nonuniform KL-like (×). Long time (bottom): uniform KL-like (solid line),
nonuniform KL-like (dashed line).
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FIG. 22. d0up/dt comparison for an impulsively started circular cylinder, at Re= 550: uniform KL-like
(solid line), nonuniform KL-like (dashed line).
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FIG. 23. Iso contours of vorticity forT = 1, 3, and 5 for an impulsively started circular cylinder, at Re= 550:
uniform KL-like (left), nonuniform KL-like (right). Levels are by steps of 2 (zero level is skipped).

to those presented in Section 4.1. Figure 31 shows the evolution of the drag coefficient and
of the number of particles forS1 andS2. These two runs have Reh ∼ 1 close to the wall, but
the evolution of the resolution varies differently in space for the two methods. At the end of
the simulations, the maximum value of Reh (corresponding to the far-wake particles) is∼25
for S1 and∼11 for S2. This means that the far wake is under-resolved inS1 but has a better
(and fair) resolution inS2. This under-resolution of the far wake is, of course, controlable
by displacing the center(x0, y0) of the redistribution lattice. This is precisely what was
done inS2. The center(x0, y0) can be further modified. Iso contours of vorticity from the
simulationS2 are shown in Fig. 32; they correspond to a region close to the body where
Reh ≤ 2. Figure 33 shows isocontours even closer to the body, also forS2, illustrating the
fine resolution.

7. FLOW PAST AN IMPULSIVELY STARTED 2-D “APOLLO” CAPSULE

In this section, the flow past an impulsively started 2-D “Apollo” capsule of generic
shape is considered. The justification for the study of such a 2-D flow can be found in
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FIG. 24. Ix comparison for an impulsively started circular cylinder, at Re= 3000. Short time (top): analytical
(solid line), uniform KL-like (e), nonuniform KL-like (×). Long time (bottom): uniform KL-like (solid line),
nonuniform KL-like (dashed line).

Wang,et al. [17]. This geometry offers the opportunity to compute the flow past a body
whose geometry is not trivial. The Reynolds number is Re= U∞D/ν = 1500, whereD is
the width of the capsule. The angle of attack is 40◦, and the time step is1T = 0.005. The
mapping used for the computation is centered at(x0, y0) = (−0.6, 0) and hasm= 1000.
This is illustrated in Fig. 34, where the valuem= 200 has been used for clarity of the
figure. Figure 34 also shows the initial position of the particles along with a closeup of
the mapping drawn, this time, withm= 1000. In the course of the simulation, the number
of particles grows from∼15,000 to∼108,000. All the other parameters are the same as
those used in Section 6. The evolution of the drag and lift coefficients is shown in Fig. 35.
It is interesting to note the mean values:C̄D = 1.91, C̄L = 0.69, and St= f D/U∞ =
0.135, the Strouhal number for vortex shedding. These are in good agreement with those
obtained in tests of the same 2-D configuration in a water tunnel (O. Karatekin, 2000,
private communication). Isocontours of the vorticity are shown in Figs. 36 and 37. In the
domain shown in Fig. 36, the “mesh” Reynolds number, Reh, is everywhere less than 75.
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FIG. 25. CD comparison for an impulsively started circular cylinder, at Re= 3000. Short time (top): analytical
(solid line), uniform KL-like (e), nonuniform KL-like (×). Long time (bottom): uniform KL-like (solid line),
nonuniform KL-like (dashed line).
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FIG. 26. d0up/dt comparison for an impulsively started circular cylinder, at Re= 3000: uniform KL-like
(solid line), nonuniform KL-like (dashed line).
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FIG. 27. Iso contours of vorticity forT = 1, 2, 3, and 4 for an impulsively started circular cylinder, at
Re= 3000: uniform KL-like (left), nonuniform KL-like (right). Levels are by steps of 4 (zero level is skipped).

The right part of the graph is thus underresolved. However, in the region covered by Fig. 37,
Reh is always less than 6, this value being reached around(X,Y) = (−1.1, 0.2), where the
vorticity magnitude is very high. The fact that relatively high values of Reh are reached in the
far wake means that, in this region of the flow, the Navier–Stokes equations are not solved
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FIG. 28. Evolution of the number of particles as a function of time for an impulsively started circular cylinder.
Re= 550 (top): uniform KL-like (solid line), nonuniform KL-like (dashed line); Re= 3000 (bottom): uniform
KL-like (solid line), nonuniform KL-like (dashed line).

FIG. 29. The two redistribution mappings for the flow past a square;m= 150,(x0, y0) = (0, 0) (left); m=
425,(x0, y0) = (−2.5,−0.67) (right).
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FIG. 30. The two initial situations for the flow past a square at Re= 100;m= 300,(x0, y0) = (0, 0) (left);
m= 850,(x0, y0) = (−2.5,−0.67) (right).

FIG. 31. Flow past a square at 15◦ and Re= 100: evolution of the drag coefficient (top) and of the number
of particles (bottom) forS1 (solid line) andS2 (dashed line).
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FIG. 32. Flow past a square at 15◦ and Re= 100 usingS2 redistribution lattice: iso contours of vorticity for
T = 10, 20, 30, 40, 50, 100 (top to bottom, left to right). Levels are by steps of 0.5.

accurately. The far-wake computation should thus be viewed as a kind of “outflow boundary
condition.”

8. STRAIGHTFORWARD PARTICLE REDISTRIBUTION

A redistribution technique, which is simpler than the one presented in Section 3.5, was
suggested by one of the reviewers of the present paper.

In this approach, straightforward redistribution is applied to all the particles (using, say, a
33 scheme), and newly created particles that would fall into the body are deleted. In general,
such an approach does not conserve any moment of the vorticity field, but the reviewer
suggested that it could be plausible that the crude treatment given to particles close to the
boundary “only provides the overall vortex scheme with some artificial boundary condition
that the vortex sheet algorithm corrects afterwards by injecting in the fluid the right amount
of vorticity.”

This redistribution technique will be referred to hereafter as SF, and the overall vortex
scheme using SF for the redistribution will be named G+ SF. The new scheme has been
tested on two problems:

• the flow past an impulsively started cylinder, at Re= 550;
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FIG. 33. Flow past a square at 15◦ and Re= 100 usingS2 redistribution lattice: iso contours of vorticity for
T = 100. Levels are by steps of 0.5.

• the flow past an impulsively started square, at Re= 100, angle of attack of 15◦, and
nonuniform resolution.

8.1. Flow Past a Cylinder

The flow past a cylinder, at Re= 550, is used to test the SF scheme. All the numerical
parameters of the simulation are the same as those used for the same flow in Section 4.1.
Because of the symmetry of this flow, the vorticity is an odd function ofy,

ω(x,−y) = −ω(x, y). (51)

Consequently, using the SF scheme does not change the total vorticity of the flow: if a newly
created particle withy > 0 falls inside the body (and is thus deleted), another particle, with
y < 0 and vorticity of opposite sign, is also deleted. The two errors cancel each other.
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FIG. 34. Redistribution mapping for the flow past an “Apollo” capsule at 40◦, with m= 200 (left). Initial
situation for the flow at Re= 1500 and mapping drawn withm= 1000 (right).
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FIG. 35. Flow past an “Apollo” capsule at 40◦ and Re= 1500: evolution of the drag coefficient (top) and lift
coefficient (bottom).
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FIG. 36. Flow past an “Apollo” capsule at 40◦ and Re= 1500: iso contours of vorticity atT = 35. Levels
are by steps of 2.

However, the linear impulse,Ix =
∫
Ä

yω dÄ, will be affected, sinceyω is an even function
of y. This is illustrated in Fig. 38, where the methods G and G+ SF are compared for both
short and long times. The jumps that occur in the curves every five time steps are due to
SF not conserving the first order of the vorticity field. The drag coefficients from the two
methods are compared in Fig. 39 (the spurious data in the linear impulse have been removed
prior to the numerical differentiation).

It is seen that methods G and G+ SF give very similar results on this flow. This indicates
that the vortex sheet algorithm performs remarkably well in helping the method recover
from the crudeness inherent in SF.

8.2. Flow Past a Square

The flow past a square at Re= 100, with angle of attack 15◦ and nonuniform resolution,
is now considered, using the same parameters as those used for runS2 of Section 6. The
nonzero angle of attack makes this flow nonsymmetric; the use of SF will therefore modify
the total vorticity.

Methods G and G+ SF have been used to compute this flow. The resultant drag coeffi-
cient,CD, has been plotted in Fig. 40. It is hardly possible to see any difference between
these two curves, which indicates, once again, that the vortex sheet algorithm makes a very
good job at correcting the spurious effects of SF.
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FIG. 37. Flow past an “Apollo” capsule at 40◦ and Re= 1500: iso contours of vorticity atT = 35. Levels
are by steps of 4.

9. CONCLUSIONS

• A technique to redistribute particles in the presence of bodies of general geometry
was developed and validated. It uses a combination of high-order redistribution schemes,
thereby conserving the total vorticity, the linear impulse, and the angular impulse.
• A modified particle strength exchange (PSE) scheme was used near the solid bound-

aries: it uses image particles to guarantee a zero vorticity flux at the boundary during the
PSE substep.
• The no-slip boundary condition is enforced in two steps: a vortex sheet that cancels

the slip velocity is first computed; it is then diffused onto nearby particles. The diffusion
scheme presented herein is a more accurate version of the original method developed by
Koumoutsakoset al.[8]. It makes the method conservative (i.e., it guarantees that the vortex
sheet is now exactly diffused into the flow). Notice that, besides its being of interest from
the point of view of accuracy, the new scheme has the additional property that it allows one
to perform under-resolved simulations that still have the proper global vorticity flux from
the boundary.
• A mapping of the redistribution lattice was integrated into the present method, making it

possible to compute the far wake of bluff-body flows with a coarser, controllable, resolution.
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FIG. 38. Ix comparison for an impulsively started circular cylinder, at Re= 550. Short time (top): analytical
(solid line), G (+), G+ SF (4). Long time (bottom): G (solid line), G+ SF (dashed line).

• The flow past an impulsively started circular cylinder was used to validate the “general”
method with uniform resolution. It was shown that the new general method performs slightly
better if small random “vibrations” are applied to the particle redistribution lattice. It was also
shown that, at the same resolution, it performs almost as well as the body-fitted method of
Koumoutsakos and Leonard [9]. This result is very encouraging. In addition, a convergence
study of the general method was also carried out (in which the spatial resolution was
increased and the time step decreased).
• The general method with nonuniform resolution was validated on the same flow, il-

lustrating the interest of using particle redistribution on a nonuniform lattice. Significantly
reduced computational cost for a similar level of accuracy was obtained.
• For the case with nonuniform resolution, and thus nonuniformσ , the PSE was modified

to be performed in physical space while remaining conservative. The quadratic convergence
of the modified scheme was proved mathematically and supported by numerical tests.
• The flow past an impulsively started square at Re= 100 andα = 15◦ was computed.

The combination of the general method with the mapping made it possible to simulate this
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FIG. 39. CD comparison for an impulsively started circular cylinder, at Re= 550. Short time (top): analytical
(solid line), G (+), G+ SF (4). Long time (bottom): G (solid line), G+ SF (dashed line).

FIG. 40. Flow past a square at 15◦and Re= 100: evolution of the drag coefficient (top) for G (solid line) and
G+ SF (dashed line).
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flow up to T = 100. If it were to be performed at uniform resolution, such a simulation
would require an extremely large number of particles. It was also shown that the parameters
of the mapping can be used to control the resolution both near the body and in the far wake.
• The flow past a generic 2-D “Apollo” capsule at Re= 1500 andα = 40◦ was used to

demonstrate the capability of the method to compute flows past bluff bodies of truly general
geometry for extended times (T = 35).
• A very simple particle redistribution technique, suggested by one of the reviewers, was

also tested. Although it lacks a sound theoretical basis and relies heavily on the robustness
of the overall vortex scheme (especially the vortex sheet algorithm), it performed very well
on the flows upon which it was tested.

APPENDIX A

Proof of the Convergence of the PSE with Variable Core Size

In 2-D, the particle strength exchange scheme is based on the approximation of the
Laplacian operator by the integral operator

∂2 f (x)
∂xr ∂xr

' 2

σ 2

∫
( f (y)− f (x))η

( |y− x|
σ

)
dy
σ 2

(A.1)

with η(|z|) a radially symmetric function such that∫
η(|z|) dz = 1 (A.2)∫

zi zj η(|z|) dz = δi j (A.3)∫
η(|z|) |z|4 dz <∞. (A.4)

Equation (A.1) is accurate to second order. To show that, we consider a Taylor expansion
of f aroundx,

f (y) = f (x)+ ∂ f (x)
∂xi

(yi − xi )+ 1

2

∂2 f (x)
∂xi ∂xj

(yi − xi )(yj − xj )+ 1

6

∂3 f (x)
∂xi ∂xj ∂xk

× (yi − xi )(yj − xj )(yk − xk)+ ∂4 f (x)
∂xi ∂xj ∂xk∂xl

O(|y− x|4), (A.5)

with implicit summation on the repeated indices (here running from 1 to 2). If Eq. (A.5) is
introduced in Eq. (A.1), and the radial symmetry ofη is taken into account, one finds

2

σ 2

∫
( f (y)− f (x))η

( |y− x|
σ

)
dy
σ 2

= ∂2 f (x)
∂xi ∂xj

∫
zi zj η(|z|) dz+ ∂4 f (x)

∂xi ∂xj ∂xk∂xl
O
(
σ 2
∫
|z|4η(z) dz

)
= ∂2 f (x)
∂xi ∂xj

δi j + ∂4 f (x)
∂xi ∂xj ∂xk∂xl

O(σ 2)

= ∂2 f (x)
∂xi ∂xi

+ ∂4 f (x)
∂xi ∂xj ∂xk∂xl

O(σ 2) (A.6)
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with z= (y− x)/σ . The replacement of the Laplacian operator by Eq. (A.1) is thus second-
order accurate for uniformσ .

Let us now investigate the influence of a nonuniformσ . If one replacesσ by σ(x) in
Eq. (A.1), the approximation error isO(σ 2(x)), but the discretized scheme is not conser-
vative.

Another possibility is to replaceσ by σ(y) in Eq. (A.1):

∂2 f (x)
∂xr ∂xr

' 2
∫

1

σ 2(y)
( f (y)− f (x))η

( |y− x|
σ(y)

)
dy
σ 2(y)

. (A.7)

Note that, in this equation,σ 2 can also be taken asσ 2 = (σ 2(x)+ σ 2(y))/2, which leads
to a conservative discrete scheme. This is what is done in the implementation used in this
paper.

It will now be shown that Eq. (A.7) is still second-order accurate. First, one defines

z= y− x
σ(y)

= z(y, x) (A.8)

and assumes thaty can be recovered fromx and z; i.e., y = y(x, z). In Eq. (A.7), it is
necessary to usez as the integration variable. One has

dz= J dy, (A.9)

whereJ is the jacobian of the coordinate transformation

J = J(y) = det

(
∂zi

∂yj

)
, (A.10)

with

∂z
∂y
(y) = 1

σ

(
1− z1∂1σ −z1∂2σ

−z2∂1σ 1− z2∂2σ

)
(A.11)

∂zi

∂yj
= 1

σ
(δi j − zi ∂ jσ), (A.12)

where∂iσ = ∂σ/∂yi . Hence, one has, for the jacobian,

J = 1

σ 2
(1− zk∂kσ). (A.13)

The transformation can be inverted to give

∂y
∂z
(y) = σ

1− zk∂kσ

(
1− z2∂2σ z1∂2σ

z2∂1σ 1− z1∂1σ

)
, (A.14)

which can be written in a more condensed form,

∂yi

∂zj
= σ

1− zk∂kσ
αi j , (A.15)
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with

α =
(

1− z2∂2σ z1∂2σ

z2∂1σ 1− z1∂1σ

)
. (A.16)

A useful property ofαi j is

∂ jσα j i = ∂iσ. (A.17)

The terms of Eq. (A.5) are now introduced into Eq. (A.7). One has∫
1

σ 2(y)
( f (y)− f (x))η

( |y− x|
σ(y)

)
dy
σ 2(y)

= I1+ I2+ I3+ I4, (A.18)

with

I1 = 2
∂ f (x)
∂xi

∫
1

σ(1− zm∂mσ)
zi η(|z|) dz (A.19)

I2 = ∂2 f (x)
∂xi ∂xj

∫
1

(1− zm∂mσ)
zi zj η(|z|) dz (A.20)

I3 = 1

3

∂3 f (x)
∂xi ∂xj ∂xk

∫
σ

(1− zm∂mσ)
zi zj zkη(|z|) dz (A.21)

I4 = ∂4 f (x)
∂xi ∂xj ∂xk∂xl

O
(∫

σ 2

(1− zm∂mσ)
η(|z|)|z|4 dz

)
, (A.22)

whereσ has been written instead ofσ(x, z). In what follows,σ will be written as

σ(y) = εg
(

y
L

)
= εg(ζ), (A.23)

with L a global length scale andg(ζ) a smooth function withg(ζ) = O(1). Because of the
smoothness ofg, all its derivatives are alsoO(1). Consequently, one has

σ = O(ε) = LO
(
ε

L

)
(A.24)

∂iσ = ∂σ

∂yi
= ε ∂g

∂ζ j

∂ζ j

∂yi

= ε

L

∂g

∂ζi
= O

(
ε

L

)
(A.25)

∂2
i j σ =

ε

L

∂2g

∂ζi ∂ζk

∂ζk

∂yj

= ε

L2

∂2g

∂ζi ∂ζ j
= 1

L
O
(
ε

L

)
. (A.26)

All the Ii ’s will now be developed aroundz= 0 (i.e., aroundy = x).
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I1 Term

One defines

K 1(y) = K 1 = 1

σ(1− zm∂mσ)
(A.27)

and performs a Taylor development ofK 1 aroundz= 0:

K 1(y) = K 1|z=0+ ∂K 1

∂zi

∣∣∣∣
z=0

zi + 1

2

∂2K 1

∂zi ∂zj

∣∣∣∣
z=0

zi zj

+ 1

6

∂3K 1

∂zi ∂zj ∂zk

∣∣∣∣
z=0

zi zj zk + ∂4K 1

∂zi ∂zj ∂zk ∂zl

∣∣∣∣
z=0
O(|z|4). (A.28)

The first term,

K 1|z=0 = 1

σ

∣∣∣∣
y=x
, (A.29)

does not contribute toI1, because of the radial symmetry ofη. The first derivative ofK 1 is

∂K 1

∂zi
= ∂K 1

∂yj

∂yj

∂zi
, (A.30)

with

∂K 1

∂yj
= − 1

σ 2(1− zk∂kσ)2
·
(
∂ jσ(1− zm∂mσ)+ σ

(
−∂zm

∂yj
∂mσ − zm∂

2
mjσ

))
= − 1

σ 2(1− zk∂kσ)2
·
(
∂ jσ(1− zm∂mσ)+ σ

(
− 1

σ
(δmj − zm∂ jσ)∂mσ − zm∂

2
mjσ

))
= − 1

σ 2(1− zk∂kσ)2
·
(
∂ jσ − zm∂mσ∂ jσ − ∂ jσ + zm∂ jσ∂mσ︸ ︷︷ ︸

=0

−σzm∂
2
mjσ

)
(A.31)

= zm∂
2
mjσ

σ(1− zk∂kσ)2
. (A.32)

Hence, from Eq. (A.15) and Eq. (A.30), one finally finds

∂K 1

∂zi
= ∂2

mjσα j i zm

(1− zk∂kσ)3
(A.33)

and

∂K 1

∂zi

∣∣∣∣
z=0
= 0. (A.34)

It is interesting to observe that

K 1 = 1

L
O
(

L

ε

)
(A.35)
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and that the application of the operator∂/∂zi multiplies the order byε/L. If the two ∂ jσ

terms in Eq. (A.31) had not canceled each other, one would have obtained

∂K 1

∂zi
= 1

L
O(1), (A.36)

even forz= 0, and I1 would not vanish asε/L tends to zero, thereby making Eq. (A.7) a
nonconvergent approximation of the Laplacian operator. However, because of the cancel-
lation of the∂ jσ terms in Eq. (A.31), one actually obtains

∂K 1

∂zi
= 1

L
O
(
ε

L

)
. (A.37)

Consequently, one also obtains

∂2K 1

∂zi ∂zj

∣∣∣∣
z=0
= 1

L
O
((

ε

L

)2)
(A.38)

∂3K 1

∂zi ∂zj ∂zk

∣∣∣∣
z=0
= 1

L
O
((

ε

L

)3)
. (A.39)

Because of the radial symmetry ofη, Eq. (A.38) does not contribute toI1, which is finally
obtained as

I1 = ∂ f

∂xi

1

L
O
((

ε

L

)3 ∫
|z|4η(|z|) dz

)
= ∂ f

∂xi

1

L
O
((

ε

L

)3)
, (A.40)

where Eq. (A.4) has been used to obtain the last result.

I2 Term

One defines

K 2(y) = K 2 = σK 1 = 1

(1− zm∂mσ)
(A.41)

and performs a Taylor development aroundz= 0:

K 2(y) = K 2

∣∣∣∣
z=0
+ ∂K 2

∂zi

∣∣∣∣
z=0

zi + 1

2

∂2K 2

∂zi ∂zj

∣∣∣∣
z=0

zi zj + ∂3K 2

∂zi ∂zj ∂zk

∣∣∣∣
z=0
O(|z|3). (A.42)

One obtains

K 2|z=0 = 1. (A.43)

The first derivative is obtained as

∂K 2

∂zi
= − 1

(1− zk∂kσ)2

(
−δim∂mσ − zm∂

2
mnσ

∂yn

∂zi

)
= 1

(1− zk∂kσ)2

(
∂iσ + zm∂

2
mnσ

σ

1− zl ∂lσ
αni

)
; (A.44)
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hence, aty = x, one has

∂K 2

∂zi

∣∣∣∣
z=0
= ∂iσ |y=x, (A.45)

which does not contribute toI2, because of the radial symmetry ofη. To compute the second
derivative, it is convenient to define

Fi j = ∂2
inσ

σ

(1− zl ∂lσ)
αnj (A.46)

so that

∂K 2

∂zi
= 1

(1− zk∂kσ)2
(∂iσ + zmFmi), (A.47)

and the second derivative ofK 2 is

∂2K 2

∂zi ∂zj
= − 2

(1− zl ∂lσ)3

(
−δk j∂kσ − zk∂

2
ksσ

∂ys

∂zj

)
(∂iσ + znFni )

+ 1

(1− zl ∂lσ)2

(
∂2

ikσ
∂yk

∂zj
+ δmj Fmi + zm

∂Fmi

∂zj

)
. (A.48)

Taking into account that, whenz= 0 (y = x),

αi j = δi j (A.49)

∂yi

∂zj
= σδi j (A.50)

Fi j = σ∂2
i l σδl j = σ∂2

i j σ, (A.51)

one finally obtains

∂2K 2

∂zi ∂zj

∣∣∣∣
z=0
= 2(∂ jσ |y=x∂iσ |y=x)+

(
σ |y=x∂

2
ikσ |y=xδk j + σ |y=x∂

2
j i σ |y=x

)
= 2

(
∂ jσ |y=x∂iσ |y=x + σ |y=x∂

2
i j σ |y=x

)
= O

((
ε

L

)2)
, (A.52)

where the last result has been obtained from Eqs. (A.24), (A.25), and (A.26). It is thus
possible to writeI2 as

I2 = ∂2 f (x)
∂xi ∂xj

∫
zi zj η(|z|) dz+ ∂

2 f (x)
∂xi ∂xj

O
((

ε

L

)2 ∫
|z|4η(|z|) dz

)
= ∂2 f (x)
∂xi ∂xj

∫
zi zj η(|z|) dz+ ∂

2 f (x)
∂xi ∂xj

O
((

ε

L

)2)
= ∂2 f (x)
∂xi ∂xi

(
1+O

(
ε

L

)2)
. (A.53)



VISCOUS FLOW PAST BLUFF BODIES 401

I3 Term

One defines

K 3(y) = K 3 = σK 2 = σ

1− zm∂mσ
(A.54)

and performs again a Taylor expansion aroundz= 0:

K 3(y) = K 3

∣∣∣∣
z=0
+ ∂K 3

∂zi

∣∣∣∣
z=0

zi + ∂2K 3

∂zi ∂zj

∣∣∣∣
z=0
O(|z|2). (A.55)

One has

K 3|z=0 = σ |y=x, (A.56)

which does not contribute toI3 because of the radial symmetry ofη. The first derivative of
K 3 is

∂K 3

∂zi
= 1

(1− zl ∂lσ)2

((
∂ jσ

∂yj

∂zi

)
(1− zm∂mσ)

− σ
(
−δim∂mσ − zm∂

2
mjσ

∂yj

∂zi

))
, (A.57)

and, aty = x:

∂K 3

∂zi

∣∣∣∣
z=0
= σ |y=x∂ jσ |y=xδi j − σ |y=x(−∂iσ |y=x)

= 2σ |y=x∂iσ |y=x

= LO
((

ε

L

)2)
, (A.58)

where the last result is obtained from Eqs. (A.24) and (A.25). Using Eq. (A.4), one finally
obtains

I3 = ∂3 f (x)
∂xi ∂xj ∂xk

LO
((

ε

L

)2 ∫
η(|z|)|z|4 dz

)
= ∂3 f (x)
∂xi ∂xj ∂xk

LO
((

ε

L

)2)
. (A.59)

I4 Term

Starting from Eq. (A.22), one easily observes that

I4 = ∂4 f (x)
∂xi ∂xj ∂xk∂xl

L2O
((

ε

L

)2)
. (A.60)
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Summary

It has been shown that∫
1

σ 2(y)
( f (y)− f (x)) η

( |y− x|
σ(y)

)
dy
σ 2(y)

(A.61)

= ∂ f

∂xi

1

L
O
((

ε

L

)3)
+ ∂

2 f (x)
∂xi ∂xi

(
1+O

(
ε

L

)2)
+ ∂3 f (x)
∂xi ∂xj ∂xk

LO
((

ε

L

)2)
+ ∂4 f (x)
∂xi ∂xj ∂xk∂xl

L2O
((

ε

L

)2)
. (A.62)

Equation (A.7) thus defines a convergent, second-order-accurate approximation of the
Laplacian operator.

The use ofσ 2 = (σ 2(x)+ σ 2(y))/2 in Eq. (A.7) falls into the category of admissible
variation ofσ , as it has the formσ = σ(y) (sincex is fixed in the analysis). Thus, it also leads
to a convergent, second-order-accurate approximation. Furthermore, this choice ofσ makes
the discrete scheme conservative. It is what was used in the numerical implementation.

Finally, the analysis also shows that, whenσ is uniform in space,I1 = I3 = 0, I2 =
∇2 f (x), andI4 isO((ε/L)2).

APPENDIX B

Numerical Convergence of the PSE with Variable Core Size

The convergence of the discretized PSE is illustrated on a test problem. A Gaussian
vorticity distribution,

ω(r ) = 0

2πa2
exp

(
− r 2

2a2

)
, (B.1)

with r 2 = (x − xc)
2+ (y− yc)

2, is used. The corresponding exact Laplacian,

∇2
eω =

2ω

a2

(
r 2

2a2
− 1

)
, (B.2)

will serve as a reference for the comparison with an approximate value, computed using a
discretization of Eq. (A.7),

∇2
aωi j = 2

∑
p,q

1

σ 2
s

(ωpq − ωi j )
1

σ 2
s

η

( |xi j − xpq|
σs

)
Spq, (B.3)

with η(z) = 1/(2π) exp(−z2/2) andσ 2
s = (σ 2

i j + σ 2
pq)/2.

One considers the exponential mapping described in Section 3.6, withβ = 1. The domain
covered by the particles is a sector that completely bounds the disk of center(xc, yc) and
of radiuspa, so that the domain where∇2ω is significant is well covered by particles.

Here, the surface of each particle is given by

S= sinh(2π/m)

(2π/m)

((
2π

m
R0

)
· exp

(
2π i

m

))2

=1 h2 = σ 2

β2
, (B.4)
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FIG. 41. Sketch of the situation for the numerical evaluation of the Laplacian of a Gaussian vortex.
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FIG. 42. Numerical approximation of the Laplacian. Top:|Ec| as a function ofκ = ε/a for δ = 2 (dashed
line has a slope of 2). Bottom:Em as a function ofκ = ε/a, for δ = 2 (dashed line has a slope of 2).
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FIG. 43. Numerical approximation of the Laplacian, forδ = 2 andκ = 1/4. Top: iso contours of∇2
aω (levels

are by steps of 0.03) and cells of the mapping. Bottom: iso contours ofE = ∇2
eω −∇2

aω (levels are by steps of
0.003) and cells of the mapping.

with i = 0 corresponding toxc (see Fig. 41). Hence, one has

σ(i ) = βh(i ) = β
(

sinh(2π/m)

(2π/m)

)1/2

·
(

2π

m
R0

)
· exp

(
2π

m
i

)
= β

(
sinh(ε/R0)

(ε/R0)

)1/2

· ε · exp

(
ε

R0
i

)
, (B.5)

with ε = 2π
m R0. This is in the form used in Appendix A.

Two parameters are defined:δ = R0/(pa) andκ = ε/a. The first one,δ, is a measure of
the distortion of the mapping over the region covered by the vortex, whileκ is related to
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the quality of the discretization, as it measures the ratio between cell size,hc, at the vortex
center, and physical problem size,a. The center of the vortex corresponds to(i, j ) = (0, 0);
thus,

xc = R0 (B.6)

yc = 0. (B.7)

Figure 41 illustrates the problem. Tests have been run forδ = 2, 4, 8, 16, 32, 64 and
κ = 1, 1/2, 1/4, 1/8. The vortex is normalized:0 = 1, a = 1; p is set to 4, and hence the
domain where∇2ω is significant is here very well covered by particles. Two errors are
computed for each run: the error at the center of the vortex (where it is maximum),

Ec = ∇2
eω
∣∣
x=xc
−∇2

aω
∣∣
x=xc

, (B.8)

and the mean error,

Em =
∑

i, j

∣∣∇2
eωi j −∇2

aωi j

∣∣Si j∑
i, j Si j

. (B.9)

Figure 42 illustrates the variations of|Ec| andEm with κ for the most severe case:δ = 2.
It is seen that the method indeed converges asκ2, as expected. The higher values ofδ (which
correspond to less severe distortions of the mapping) lead to results that are almost identical.
Isocontours of∇2

aω andE = ∇2
eω −∇2

aω, for the caseδ = 2 andκ = 1/4, are plotted in
Fig. 43, together with the mapping used. It is seen that∇2

aω is almost axisymmetric and that
the error,E, is also almost axisymmetric. This confirms the theoretical proof of Appendix A.

ACKNOWLEDGMENTS

P. Ploumhans was supported by Fonds pour la Formation la Recherche dans l’Industrie et dans l’Agriculture
(FRIA). Part of the computer time was provided by the Action de Recherche Concert´ee (ARC) ARC 97/02-210
of Professors R. Keunings and V. Legat. We also thank E. Bonaffini for his help in the creation of some figures.

REFERENCES

1. M. Bar-Lev and H. T. Yang, Initial flow field over an impulsively started circular cylinder,J. Fluid Mech.
72, 625 (1975).

2. J. E. Barnes and P. Hut, A hierarchicalO(N log N) force calculations algorithm,Nature324, 446 (1986).

2a. R. Benhaddouch, Treatment of a Neumann boundary condition by a Particle Strength Exchange method, in
Electronic Proc. Third International Workshop on Vortex Flows and Related Numerical Methods, Toulouse,
August 24–27, 1998, ESAIM (European Series in Applied and Industrial Mathematics) (1999), available at
http://www.emath.fr/Maths/Vol.7/.

3. G.-H. Cottet, M. Lemine, and M. El Hamraoui, Recent developments in vortex methods for the simula-
tion of unsteady incompressible flows, inElectronic Proc. Third International Workshop on Vortex Flows
and Related Numerical Methods, Toulouse, August 24–27, 1998, ESAIM (European Series in Applied and
Industrial Mathematics) (1999), available at http://www.emath.fr/Maths/Proc/Vol.7/.

4. G.-H. Cottet and P. Koumoutsakos,Vortex Methods: Theory and Applications(Cambridge Univ. Press,
Cambridge, UK, 2000).

5. P. Degond and S. Mas-Gallic, The weighted particle method for convection–diffusion equations. I. The case
of an isotropic viscosity; II. The anisotropic case,Math. Comput.53, 485 (1989).



406 PLOUMHANS AND WINCKELMANS

6. L. Greengard and V. Rohklin, A fast algorithm for particle simulations,J. Comput. Phys.73, 325 (1987).

7. P. Koumoutsakos,Direct Numerical Simulations of Unsteady Separated Flows Using Vortex Methods, Ph.D.
thesis, California Institute of Technology, 1993.

8. P. Koumoutsakos, A. Leonard, and F. P´epin, Boundary conditions for viscous vortex methods,J. Comput.
Phys.113, 52 (1994).

9. P. Koumoutsakos and A. Leonard, High resolution simulation of the flow around an impulsively started
cylinder using vortex methods,J. Fluid Mech.296, 1 (1995).

10. P. Koumoutsakos and D. Shiels, Simulations of the viscous flow normal to an impulsively started and
uniformly accelerated flat plate,J. Fluid Mech.328, 177 (1996).
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