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Recent contributions to the 2-D vortex method are presented. A technique to
accurately redistribute particles in the presence of bodies of general geometry is
developed. The particle strength exchange (PSE) scheme for diffusion is modified
for particles in the vicinity of the solid boundaries to avoid a spurious vorticity flux
during the convection/PSE step. The scheme used to enforce the no-slip condition
through the vorticity flux at the boundary is modified in a way that is more accurate
than in the previous method. Finally, to perform simulations with nonuniform res-
olution, a mapping of the redistribution lattice is also used. In that case, the PSE is
still done in the physical domain, using a symmetrized, conservative scheme. The
quadratic convergence of this scheme is proved mathematically, and numerical tests
are shown to support the proof. These elements are all validated on the benchmark
problem of the flow past an impulsively started cylinder. High-resolution, long-time
simulations of the flow past other bluff bodies are also presented: the case of a square
and of a capsule at angle of attacke) 2000 Academic Press
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1. INTRODUCTION

In the past two decades, there have been significant developments in the field of
tex methods: fast algorithms using multipole expansions (Greengard and Rohklin |
Barnes and Hut [2]) and active error control (Salmon and Warren [16], Winckeletahs
[19, 20]), accurate treatment of viscous effects using the particle strength exchange sch
(PSE, Degond and Mas-Gallic [5]), and accurate enforcement of the viscous boundary c
dition (Koumoutsakost al.[8], Mas-Gallic [14a], Leonardt al.[12], Ploumhansgt al.[15],
Benhaddouch [2a]). These elements have made the vortex method suitable for the cor
tation of high-resolution simulations of flows with viscous boundaries. For instance, su
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computations were carried out by Koumoutsakos and Leonard [9] and by Koumoutsa
and Shiels [10], who used the method to study impulsively started flows past a cylin
and past a flat plate, respectively. So far, accurate simulations have only been achieve
flows past bodies of particular geometry (e.g., the circular cylinder, the flat plate). Recer
the use of a mapping was introduced in the vortex methods, allowing one to perform s
ulations with nonuniform spatial resolution (Cotédtal. [3], Lemine [11], and Cottet and
Koumoutsakos [4]).

In this paper, we present several new contributions to vortex methods aimed at
high-resolution computation of flows past bluff bodies of general geometry. We also co
bine these developments with the use of a mapping to perform simulations with nont
form spatial resolution. In this case, the PSE is modified and is still done in physi
space.

The paper is organized into the following parts: The basic equations (Section 2), the
vortex method with its new developments (Section 3), the validation of these new de\
opments for the flow past an impulsively started circular cylinder at uniform (Section
and nonuniform (Section 5) resolutions, the computation of the flow past a square
ing two different nonuniform resolutions (Section 6), the simulation of the flow past
body of nontrivial geometry (Section 7), and a simple approach to particle redistributi
in the presence of a body (Section 8). Appendix A provides the mathematical proof t
the modified PSE is convergent, and Appendix B provides numerical tests that support
proof.

2. THE BASIC EQUATIONS FOR 2-D FLOWS

Two-dimensional incompressible flows are governed by the vorticity equation

Dw w
— = — +u-Vo =1V, 1
Dt gt (U vesvVie @)

whereu(x, t) is the velocity fieldy is the kinematic viscosity, and =V xu=w - €, is
the vorticity. In bluff-body flows, with the body translating with velocitly(t) and rotating

around its center of mass,, with angular velocity<2(t), the fluid velocity on the body
surfacexs, is equal to the velocity of the body:

U(Xs) = Us = Up(t) + €, x (Xs — Xp)Q2n(1). (2)
At infinity, we have
UX) > Uy as |X| — oo, 3)

with Uy, the freestream velocity. For incompressible flows, the velocity can be expres:
as

u=Vxt+ Uy, (4)
with ¢p = i - e, the stream function related to by

VY = —w. (5)
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3. THE VORTEX METHOD FOR 2-D FLOWS

The vorticity field is represented by Lagrangian, scalar-valued, particles:

N
(1) =Y G(x—x)I. 6)

i=1

Each patrticle is characterlzed by its positig(t), and its strengthlj (1), i.e., its circula-
tion, I'j = fsa)ds i §, with § the area of fluid associated with the partcheThe

distribution function;, associated with a particle is defined by

G400 = (':') @)

with o; the smoothing parameter. There are many possible choices for the fungten,
e.g., Leonard [14], Winckelmans and Leonard [18]). In this paper, the Gaussian distribut
is used throughout:

1 2
¢(p) = o—ex p(—%). ®)
The velocity at any positior, computed fromw (Biot—Savart law), is
CI(I —Xjl/oj)
uex, t) = Z X’ 2 2 (x = xj) x T 9)

with q(p) = [ ¢(S)s dS(=5= (1 — exp(—p?/2)) for the Gaussian smoothing).

The way to handle viscous boundaries in the vortex method was originally developpec
Koumoutsakost al.[8]. In the present paper, a modification of the method is presented tf
is more accurate and also better suited to the computation of flows past bodies of ger
geometry. A typical time step\t, of the vortex method is divided into two substeps.

¢ Insubstep lthe local velocity is computed and integrated with a second-order Adam
Bashforth scheme to convect the particles (Section 3.1). Their strength is updated wi
modified particle strength exchange scheme (Section 3.2) that is integrated with an E
explicit scheme. This modified PSE guarantees a zero vorticity flux at the solid bound
during substep 1. After this substep, a slip veloakty)sp, is present at the solid boundary.
Algorithmically, substep 1 is expressed as

1
XML = x4 At (gui oMM — S (x"1, F”‘l)) (10)

rs =1, ", . (11)

PSE

dt

e In substep 2the vortex sheetAy, necessary on the body surface to cancel the sli
velocity generated by substep 1, is computed (Section 3.3). This vortex sheet correspt
to a vorticity flux that must be emitted during a timé (Section 3.4):

X" ). (12)

wall

dr;
=y 4 Atd—t'
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Also, a redistribution scheme must be applied every few steps (Section 3.5) to main
spatial uniformity of the particle distribution and thus maintain the second-order spa
accuracy of the method. After each particle redistribution, the new time step is done us
a second-order Runge—Kutta scheme; substep 1 becomes

X2 = X0 4 Aty (X", T (13)
dr;
rr=1"+ Atd—t' ", T (14)
PSE
1
X=X S AU O, T 4 (2, T) ). (15)

Substep 2 is still given by Eq. (12).

3.1. Convection

Particle positionsy; (), are governed by the equations

%xi O =u(®,0, 1<i<N, (16)
with
U (1), 1) = —ZW(M —x)) X &, (17)
i T Aj

=1

whereo? = (o7 4 07)/2. The use of the symmetrizedis needed for the convection step
to conserve the moments of order 0, 1, and 2 of the vorticity field (Leonard [13]). T
right-hand side of Eq. (17) is computed using a fast algorithm that has an operation cc
of O(N log(N)) and with active error control based on accurate error bounds (Barnes ¢
Hut [2], Greengard and Rohklin [6], Salmon and Warren [16], Winckelneaak [19, 20]).

3.2. Diffusion with Zero Flux at the Wall

The treatment of diffusion is based on the technique of particle strength exchange (Dec
and Mas-Gallic [5]). In this algorithm, the Laplacian opera¥ris approximated by an
integral operator,

2
Vo~ 5 [ 1=y @) - 000 d. (18)
with n, (X) = (1/o®)n(|x| /o) andy(s) = —1 L¢(s). The Gaussian smoothing is such that

ne = ¢, The integral operator in Eq. (18) is discretized over the particles, and the evolut
equation for the particle strengths becomes

dr

P
—— == ) (ST = §T)ne (% —X;)
dt o2 ~

[

2
U—Z Z(SFJ‘ — ST ne (X — X)) . (19)
ieP
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In practice, the right-hand side of Eq. (19) does not involve a contribution fror\ all
particles, as the rapid decrease ofieans that only the particles close to partiactentribute
significantly todI';/dt. The subset of particles that contribute significantigip/dt is called
P;. If the Gaussian smoothing is uséd, consists, typically, of all the particles less than
50 from ;. Wheno is not the same for all particles, Eq. (19) is replaced by

N
% = ZDZ G—t (ST — §Ti) mij (X — X))
j=1 "1
1
:zuzﬁ(srj—s,-ri)mj(xi—xj) (20)

jer Y
with ni; (Xi — Xj) = (1/ai§)n(|xi — Xjl/oij). As for the original PSE [5], this symmetrized
version ofthe PSE s still conservativ%(zi’\':1 I'j) = O.ltisalso still second-order accurate
providedo varies smoothly in space (see Appendixes A and B). An alternative approa
is to do the PSE in a mapped domain as was done by Gattdt [3] and by Cottet and
Koumoutsakos [4].

If Eg. (20) is used for wall-bounded computations, the PSE is not complete: Partic
close to the wall are not completely surrounded by other particles. Consequently, a spur
vorticity flux appears at the wall (although the total vorticity is conserved). In order 1
complete the PSE, the present method uses image particles when computing the PS
particles close to the wall. This zeroes the vorticity flux at the wall (see Benhaddou
[2a] for a modified PSE that allows one to enforce an arbitrary flux at the wall). Althouc
numerical tests have not shown that images definitely improve the accuracy of the metl
there are several reasons to use them:

e Early proofs of convergence of the vortex method in the presence of viscous bounda
require a zero vorticity flux at the boundary during substep 1 (Egs. (11) and (14)); see Cc
and Koumoutsakos [4] and references therein.

e Images are necessary in 3-D to enforce the Dirichlet boundary condition on the nort
component of the vorticity (Ploumhaesal. [15]).

e Having a zero vorticity flux during substep 1 allows one to easily compare the circ
lation produced by the vorticity flux on a part of the boundary for different methods (st
Sections 4 and 5).

The use of images is first explained on a normalized 1-D problem (see Fig. 1). Consi
a wall atx = 0. Particles are located & = j + 3 (j > 0) and have strengtj. Image
particles have positior; = —x; and strengtls; = s;. Figure 1 illustrates the effect of the

5 X

FIG. 1. Use of PSE images in 1-D: particle®)and images®).
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Xj

FIG. 2. Use of PSE images in 2-D.

image particles for the modified PSE: They guarantee zero vorticity flux at the wall. Als
because of the rapid decrease)pthe influence of the images is only felt by the particles
close to the wall (typically, those witk < 5 if the Gaussian smoothing is used).

In 2-D, for obvious geometrical reasons, one cannot define a set of image particle
easily as in 1-D. The technique is therefore slightly different (see Fig. 2). The computat
of the PSE for particlé involves two subsets of particle®; (the subset of particledose
enoughto x;) and P (the set of the images of the particlesf). If the particlei is such
thatx; is more thard.;; (typically 50 for the Gaussian smoothing) from the body surface
9D, images have no effect aiil’;/dt; so P} is empty. Ifx; is closer tharde from 9D,
each particle iP; has an image particle iR/. If x; is the position of a particle i, x;
represents the position of its image. This position is computed using symmetry; with
axis of symmetry being the line tangenta® that contains the point &fD closest tox;
(see Fig. 2). The strengtii'(), surface §), and smoothing parameter;| associated with
an image particle are equal to those of the original particle. This technique is not affec
by curvature effects as long as the curvature radius is much larget/Ahan, which is the
case in all well-resolved simulations (see Sections 4-7).

The 1-D image-modified PSE is conservative, as can be seen from Fig. 1. This resu
comforting since such a modified PSE indeed solves

ow %w a

22 _ %% with 22 —0 at x=0. (1)
ot ax2 X

The 2-D image-modified PSE should also be conservative. In practice, however, thi
not strictly the case: The su@”=l dTj/dt is not zero (although it is small compared to
(% ZiNzl (dT; /dt)?)/2. This calls for a correction that will be applied when the vortex
sheet is computed (Section 3.3). In that way, the correction will only affect particles clc
to the wall, not the entire flow.

3.3. Computation of the Vortex Sheet

After we convect the particles with the local velocity and update their strength accordi
to the modified PSE, there is a slip velocitylJgjip, at the wall. The vortex sheety,
necessary onthe body surface to cancel this slip velocity is then computed using the boun
element method. The body surface is discretized usingoundary elements (i.e., “vortex
sheet panels”), each of size(h) (with h the typical distance between patrticles in the
vicinity of the body) and each of uniform strength. For each computational panel on f
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body, the slip velocity underneath that panel is taken as the average, over the pane
the slip velocity induced by the freestream and by all vortex particles which, for this st
only, are considered as point vortices (to ensure that all the vorticity is indeed outs
of the body). In 2-D, this can be done directly from the Green’s function integral fc
the velocity potential induced by the freestream and by the point vortices (Koumoutsal
[7]). It can also be evaluated numerically, by integrating, with some appropriate numeri
quadrature (e.g., Gauss quadrature), the slip velocity obtained from the fast algorithm. T
later approach, although slightly less accurate than the first one, has a direct extension to
Once the panel-averaged slip velocitytJsip, has been evaluated for all panels, computing
the panel strengths to cancel the slip velocity amounts to solving a linear system. This i
because, in addition to inducing a uniform tangential velocity underneath themselves (et
ton x e,Ay/2), the panels also induce a tangential velocity on one another. Notice that
tangential velocity induced by one panel on another is also averaged over that panel, u
the same numerical quadrature as above.
An integral constraint,

%Ay(s) ds= —2Ag[Q(t + At) — Q(1)], (22)

with Ag the surface of the body, has to be imposed on the strength of the vortex sh
(Koumoutsako®t al.[8]). If Eq. (22) is discretized on the panels, it becomes

M
> An b = —2Ag[Q(t + At) — Q(1)]. (23)
i=1
with Ay; the strength of panel andb; its length. To take into account the fact that the
image-modified PSE is not exactly conservative, Eq. (23) is here replaced by
N

Ay b = —2AsQ(t + At — > T}, (24)
i=1 i=1

M=

with I';" the strength of the particle after use of the modified PSE. There ardthud equa-
tions, withM unknowns. This overdetermined system is solved in the least-squares sen
but the constraint (24) is enforced exactly, using the technique of Lagrange multipliers.

3.4. Vortex Sheet Diffusion
The total flux to be emitted into the flow for the other substep of the diffusion process

given by
o Ay

v% = At (25)
This flux must be emitted during a timst. In effect, the vortex sheety must be dis-
tributed to neighbor particles by discretizing the Green'’s integral for the inhomogenec
Neumann problem corresponding to the diffusion equation. See Koumoutsg&b$8]

for a simple scheme in 2-D (referred to hereafter as scheme K). Winckelmans (1993,
vate communication), Leonagt al.[12], and Ploumhanst al.[15] have proposed a more
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y xe%\k «
v

X

FIG. 3. Panel to particles diffusion: particles on a regular lattice aligned with the panel (left); particles wi
arbitrary position with respect to the panel (right).

accurate scheme (scheme W). Consider a panel of uniform strangtbcated along the
y-axis, from—b/2 to b/2, and diffusing to the right (the left being the body into which
the vortex sheet does not diffuse), as shown in Fig. 3. The amount of circulatignthat
must be received by the particle locatecat- 0, y; (any sign), is given by

xi+hj /2 yi+h; /2
AT :/ / Awdx dy (26)
xi—hi/2 Jyi—hi/2

with h? = § the fluid area associated with particleAw stands for the change in vorticity
due to the flux from the panel acting over a titheand is itself the result of a time integral,

At dw

with
do Ay 1 1 x? (y—b/2)/v/avt
ot = ar v v O O AR -

where erf¢s) = fs‘”% exp(—v?) dv. The amount of circulation received by the particle
is

AT} = OM% dt, (29)

where
%://i—?dxdy (30)
In scheme K, Egs. (29) and (30) are integrated numerically using the mid-point rule:
AT} = SAy\/%\/lEexp(— Zjit>[erfc(s)]g/:+2g§%. (31)
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TABLE |
Panel to Particles Diffusion
with K Scheme

h?/(4v At) (2= AT/ (bAy)
1/4 1.000
1/2 0.999
1 0.986
2 0.881
4 0.592

Because the spatial integration is done numerically, this scheme is not conservative;
Ay is not exactly distributed to the particldsXy # >; AL'). Table | contains the values
of the ratio}"; ATj/(bAy) for differenth?/(4v At). Itis seen that scheme K becomes less
and less conservative b3/(4v At) increases.

In scheme W, the integral in Eq. (30) is performed exactly, giving

dari do _ Ay (X —hi ) /2) /Bt
o= //adx dy= A—t([erfc(s)](xl+hl/2)/m)

AL ((—b/2)—h /At (i +b/2)—hi /2)/+/Ant
( 4"t§(['erfc(s)]«yi—b/2>+hi/2>/m_['erfc(s)]<<yi+b/2)+hi/2>/m> . (82

where ierf¢s) = fs°° erfc(v) dv = 71; exp(—s?) — serfo(s). Notice thath; | /2 = x; if 0 <

X < h; andh;;/2 = h;/2 otherwise. This allows for particles in the “first layer” to be
closer to or further away from thg-axis thanh; /2 and it ensures that the scheme remain:
conservative in such cases. The time integral in Eq. (29) is evaluated using Gauss quadr
(3 or 4 points).

If particles are on a regular lattice aligned with the panel, scheme W is always consel
tive. It could thus also be used to perform under-resolved computations, where the valu
h?/(4v At) would be very high. In practice, however, the spatial distribution of the particle
is not well aligned with the vortex panel (see Fig. 3): The proposed scheme is then
exactly conservative. To enforce conservation, the following correction is made: Insteac
using AT given by Egs. (29) and (32), one uses

(AT})?
AT consev= AT} + ————— | bAy — AT |, 33
| e (e > ) @)

where j runs over all particles concerned by the panet. This scheme minimizes
> (AT — AT conserv?/ (AT)? with the constraint thatbAy) — (3~ AT conser) = O.

For diffusion with the above schemes to work properly, the spatial distribution of tf
particles must remain fairly uniform. This is one reason particle redistribution is need
every 5 to 10 time steps. Of course, as in vortex methods without solid boundaries, it is @
needed to minimize the PSE and convection errors.

Comparison of schemes K and Wschemes K and W (this one used together with
Eqg. (33)) are now compared for the first time steps of the simulation of an impulsive
started circular cylinder, at Re U,,D/v = 550. The particles are initially set on a lattice
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FIG. 4. The KL redistribution technique (left), and the general one (right).

that follows the boundary (Fig. 4), add/(4vAt) = 1/2. The other relevant parameters
of this simulation are given in Section 4.1. Figure 5 compares the linear imgdylse,
JoYwdQ =3~ yplp, obtained with the two schemes with an analytical solution vali
for short times [1]. It is seen that, for this flow and with particles following the boundar
both schemes give accurate results, with scheme W performing slightly better.

3.5. Particle Redistribution

In accurate particle methods for direct numerical simulation (DNS) of viscous flow
one needs to maintain the condition that particle cores overlap. This calls for a part
redistribution scheme. It consists in replacing the distorted set of vortex particles b
new set where the particles are, again, located oh arh lattice. If o is not the same
for each particle, the redistribution is performed in a mapped domain (see Section 3.6

-1.85

-1.60

Ix

-1.85

-1.70 |

-1.75 : ‘ - ‘
0.00 0.05 0.10 0.5 020 025

T

FIG. 5. I, comparison for short times for an impulsively started circular cylinder, aER&0: analytical
(solid line), W scheme<§), K scheme k).
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which particles are located on axl1 mapped lattice after redistribution. Consider first the
normalized 1-D problem with unit spacing. In thg(x) scheme (that conserves up to order
p = 3 of the vorticity distribution; recall thap = 0 is the circulationp = 1 is the linear
impulse, andp = 2 is the angular impulse), an old particle located-di/2 < x < 1/2
gives

(83— 2X)(4x% — 1)/48 to the new particle located at3/2
(1—2x)(9 — 4x?)/16 to the new particle located atl/2
A1+2x)(9— 4x2)/16 to the new particle located af2
(34 2x)(4x? — 1)/48 to the new particle located atB

(34)

If a wall is present, the redistribution of particles close to the wall must be modifie
because particles are not allowed inside the body. This is achieved by using decérjtere:
schemes. Two such schemes are detailed here, considering that an old particle is locat
—2 < x < 3 and that the wall is at = —3 for the A}, scheme and at = —1 for the A}
scheme:

(X —2)(x —1)/2 tothe new particle located at 0
AS(X) givesg X(2 — X) to the new patrticle located at 1 (35)
X(x —1)/2 to the new patrticle located at 2

(1—2x)(2x — 5)(2x — 3)/48 to the new particle located atl/2
(2x —5)(2x — 3)(1 + 2x)/16 to the new particle located af24
(1—2x)(2x —5)(1 4+ 2x)/16 to the new particle located af3
(1—2x)(3—2x)(1+ 2x)/48 to the new particle located at%

Aj5(x) gives (36)

In the present approach /e scheme is used for particles located more thghfBom the
wall, a A5 scheme for particles with distance betwe¢@ and 32, and aA’, scheme for
particles less than/2 from the wall.

In 2-D, the problem of deciding which scheme to use near the boundaries is more invol
because, in general, the boundary crosses the redistribution lattice in an arbitrary v
Two steps are used. First, an old particle is redistributed irxtb@ection and temporary
particles are created. Az scheme is used if it is possible (that is, if it doesn’t introduce
particles inside the body); if not, A5 scheme is used and if it still leads to the creation
of particles inside the body,&, scheme is chosen. This redistribution in #adirection has
thus created four/;3 or A3) or three (A}) temporary particles. Each temporary patrticle is
then redistributed in thg-direction using, in order of preferenceja, Aj, or A5 scheme.
Note that the scheme used in thelirection is not necessarily the same for each temporar
particle. A penaltyp; is given to each new particle, with

0 if only centered schemes were used
pi =41 ifaA} scheme was used for tixe or they-direction
2 if A, schemes were used for both theandy-directions.
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x) Agfy)

FIG. 6. 2-D redistribution schemes\; for point A; A; A3 A} for point B.

This leads to the creation d¥,, new particles. A global penalty is then computed:

Pyy = =i=t ™ (37)

In a second step, the global penaRyy, obtained when doing the redistribution first in the
y-direction and then in thr-direction, is computed. In the end, the order of redistributior
chosen is the one that leads to the lowest global penalBxf= Py x, an average of the
two schemes is used.

Figure 6 gives an example of the; A5 A redistribution scheme. Particke is far from
the walls, so aA3 scheme is used in both directions. PartiBlés close enough to the
wall that decentered schemes have to be used: On®has- f—g and Py x = i—é so the
redistribution proceeds first in thedirection and then in the-direction.

The surface§ = h?, of each particle in the new set is determined by the mapping (s
Section 3.6). The smoothing parameter is taken;as gh; with g the core overlapping
parameter (typicallyg = 1 for the Gaussian as defined in Eq. (8)). For particles close 1
the body, the surface is “corrected” to take into account the fact that part of th&are
associated to particieis “inside” the body.

3.6. Redistribution with Mapping of the Physical Domain

In external flows, the vorticity is located in the boundary layer and in the wake, wi
the magnitude of the vorticity decreasing as one goes downstream. Thus it would be n
efficient to have high resolution near the body and coarser resolution in the far wake.
achieve this, the physical domain, with spatially varying resolution, is mapped onto a reg
indicial lattice(i, j) (Cottetet al.[3], Lemine [11], Cottet and Koumoutsakos [4]). Different
mappings can be considered. One example is the exponential mapping given by

X =Xo+r(i) cosh(j)

R (38)
Y =Yo+r(i) sinf(j)
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with6(j) = %j ,0<j<m,andr(i) = Ryf(i),i > 0. The functionf (i) is chosen such
that all cells are “almost” square:

rdo =dr when di=dj. (39)

This leads to the following expression fé«i ):

f(i)= exp(%i) . (40)

After each redistribution, new particles in the mapped domain have po§itierl/2, | +
1/2) and the corresponding positions obtained from Eqgs. (38) and (40) in the physi
domain. The fluid area associated with the particle is

i+1 pj+l
S= //rd@dr // —d —d

_ TR 4r . — ool i
= R0<exp< - a+ l)) exp< - |>> (41)
_ sinh(27/m) 21 2 2
= 7(271/@ ((F Ro> -exp(E(l + 1/2))) . (42)
Notice that, for small Z/m, this further reduces to
—re~ ((ZR) . exol Zi i
S=h"~ ((m R0> exp(m(|+1/2)>) (43)
and thus
2w 2 .
h~ (F Ro) -EXP<H(I + 1/2>> : (44)

The smoothing parameter, associated to the particle is given by

(i) = gh, (45)

where g is the core overlapping parameter (which is the same for all particles). For t
Gaussiang = 1 is used.

The use of this mapping produces dghat varies smoothly in space (so that Eq. (20) car
be used safely, preserving second-order accuracy of the PSE; see Appendixes A and |

3.7. Quality Criterion for a Vortex Simulation

To gauge the quality of a numerical simulation, one has to consider the “mesh” Reync
number. In vortex methods, it is natural to use the “mesh” Reynolds number based
vorticity:

ol h?

Vv

(46)
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A well-resolved simulation is one such that
Re, = O(1), 47)

as this ensures that the relevant viscous scales present in the flow are resolved.
To accurately resolve the diffusion phenomena, it is required to have

vAt
7 = o). (48)

Multiplying Eq. (47) by Eq. (48), one finds that
|w| At = O(1). (49)

This basically ensures that particles do not rotate too much with respect to each other (r
thatw/2 is the rotation of a fluid element).
The PSE is also subjected to a stability constraint that requires that

VAt _ . (50)

o2
where¢ depends on the smoothing function, the core overlapping parargetend the
scheme used for the time integration.

Itis possible to carry out an analysis of the stability of the PSE and to find a lower bou
on ¢ (hereafter referred to as). For the Gaussian, with = 1, one finds:

e for the Euler explicit schemey* = 0.595,
o for the Adams—Bashforth 2 schenge, = 0.297.

4. FLOW PAST AN IMPULSIVELY STARTED CYLINDER AT UNIFORM RESOLUTION

In this section, the general method, with uniform spatial resolutjastested on the flow
past an impulsively started cylinder. This flow is interesting because: (1) it is a benchm
for bluff body flows; (2) there exists an analytical solution valid for short times (Bar-Lev ar
Yang [1]); and (3) this flow has been extensively studied by Koumoutsakos and Leon
[9], using a vortex method, but with a redistribution technique specifically designed 1
the circle, who showed that the vortex method compared very well with other numeri
techniques on that flow.

Figure 4 shows the difference between the KL-like approach and the general methoc
the KL-like method, the particles are initially (and also after each redistribution) located
a way that “follows” the boundary, but each particle still has an aré# afsociated with
it. This is clearly the best one can do to obtain accurate results for the flow past the cylin
However, it cannot be extended to general geometries.

A redistribution technique similar to what was used in KL has been implemented,
order to have a “KL-like reference” solution for long times. Redistribution is done with
Az scheme in thé-direction and with, in order of preferenceja, A5, or A, scheme inthe
r-direction. Notice that, in all that follows, “KL-like” is used to refer to a “Koumoutsakos-
Leonard-like” method, even though it was here improved using (1) the modified P!
(Section 3.2), and (2) the more accurate wall vorticity flux (Sections 3.3 and 3.4).
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Two sets of simulations were carried out: the first one corresponds to a Reynolds nun
Re= U, D/v =550, and the second one to Re3000. Also, several variations of the
method presented in the previous sections were tested:

o the use of random “vibrations”: at each redistribution, the center of the “redistributic
lattice” is chosen randomly in{h/2; h/2] x [—h/2; h/2];

o the use of a “halo” around the body: at each redistribution, when particles are rec
tributed on a regulan x h lattice, a minimal distancel,, o, between a new particle and the
body surface is required;

e the combination of the two methods above.

Hereafter, the general method and its three variations will be referred to ast&/, G +
H, and G+ H + V, respectively.

Different comparisons are made as a functiof et tU.,/D: the x-component of mo-
mentum, |y = fQ YodQ = Zpypl"p, and the drag coefficien€Cp = Fx/%pUEOD with
F« = —pdly/dt, wheredly/dt =~ (Ix(t + At) — I (t — At))/(2At) (in order to avoid
spurious noise due to redistributions, thecurve is filtered using a 5-point moving av-
erage before the numerical differenciation). It is also of interest to compare the product
of circulation from the upper part of the cylindeT",/dt = vagg—? do. This can be
easily obtained from the computed panel values only, Eqg. (25), since, in our method,
use of PSE images guarantees a zero vorticity flux during the PSE step. In some case:
production of circulation has revealed itself as a better diagnostic than the drag coeffic
for the comparison of the different schemes. Isocontours of vorticity are also compar
Finally, we compare the values of the panels’ strength. This is a very tough comp:
son, as it concerns the vorticity flux at the boundary. The general method exhibits a hi
frequency noise in the vorticity flux, and the comparison is thus also carried out in the Fou
domain.

4.1. Re=550

The parameters of the simulation as = 0.01 andh/D = 6.03 x 103. Gaussian
particles are used, witf = o/h = 1. Redistribution is done every five time steps. If a
new particle ha$l'i| < 0.001Tj |max it is deleted (in order to avoid too high a growth rate
for the number of particles), and the loss of circulatibp,is redistributed equally among
the remaining particles. The presence of 10 layers of particles around the body is :
enforced after each redistribution. When a “halo” is ushg, = b/4, with b the length
of a panel. There ar®l = 592 panels. Thus/D = 7/592= 5.31 x 1073. In the KL-like
method, this corresponds, for the first layer of particles after redistribution, to one parti
in front of each panel. The area associated with these particles isStheB.63 x 1075,
the square root of which is equal ko= /S = 6.03 x 10~3. Equation (29) is integrated
with four Gauss points. The integration scheme for convection is a second-order Adar
Bashforth (second-order Runge—Kutta for the first step and after each redistribution);
PSE diffusion, a first-order Euler explicit scheme is used. A fast tree code is used, w
multipole expansions of third order. The mean error estimate (on the norm of the veloci
is ~3 x 103U, the number of particles goes fron5000 to~70,000 during the course
of the simulation, and the total run time+s3 h on a DEC alpha running at 433 Mhz.

Figure 7 shows a comparison between the analytical expresslgriafshort times and
I, computed with the different methods. In this figure, the KL-like method gives the resu
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FIG. 7. 1, comparison for an impulsively started circular cylinder, at=R850. Short time (top): analytical
(solid line), KL-like (), G (+), G+ V (O), G+ H (O), G+ H + V (A). Long time (bottom): KL-like (solid
line), G+ V (dashed line).

closest to the analytical prediction; the methods G ang \Bgive almost identical results,
which are not quite as good as those obtained using the KL-like approach. This, of cou
is to be expected, as the same resolution was used for a body-fitted method versus a ge
non-body-fitted method. The methods{GH and G+ H + V also give almost identical
results, but these are not as good as those of the three other methodd., \Weosmpared
for longer times, all five methods give results that cannot be distinguished (thus, for clar
only the results from the KL and & V methods have been shown in Fig. 7).

A comparison of the drag coefficier@p, is shown in Fig. 8. Since all five approaches
give almost identical results, not all results are shown in Fig. 8. It is interesting to zoom
on the parts of the graph corresponding to local extrema of the drag coefficients. The gre
of Fig. 9 show that the methods G andHGV give results closer to those of the KL-like
method. Also, the G- V and G+ H + V methods exhibit somewhat higher noise levels.

Figure 10 illustrates the fact that half the total production of circulatidh,/dt, allows
a better distinction between the different methods than the drag coefficient. It is calcule
directly by summing the strengths of half the panels. To smooth out high-frequency nc
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FIG. 8. Cp comparison for an impulsively started circular cylinder, at-R850. Short time (top): analytical
(solid line), KL-like (¢), G (+), G+ V (O). Long time (bottom): KL-like (solid line), G+ V (dashed line).

due to redistribution, this curve is filtered using a five-point moving average. Figure
focuses on the parts of Fig. 10 where the methods differ most. From Figs. 10 and 1:
is seen that the G- V method is the one that gives results closest to those of the KL-lik
method.

Figure 12 shows a comparison of iso contours of vorticity for the KL-like and &
approaches. The agreement between these techniques is very good, although the mini
and maximum value aob are slightly different (because they correspond to particles ver
close to the wall). Also, a small asymmetry is present in the minimum and maximum valt
of the vorticity for the methods using small random “vibrations” of the redistribution lattic
(G + V and G+ H + V). Short-wavelength oscillations in the low-value iso contours ar
present at positions where the contours come very close to the region with no particles

Figure 13 compares the 16 first modes of the vortex sheet'’s strefgthgt T = 1 and
T =5 for the KL-like and G+ V methods. It also shows the “filtered” strength of the
vortex sheet (obtained through an inverse Fourier transform of the 16 first modes) at
same times. The agreement between the two methods is seen to be quite good; the
differences are more noticeable at the local extrema.
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FIG. 9. Cp comparison for an impulsively started circular cylinder, at=R850: KL-like (solid line),
G (dotted line), G+ V (dashed line), G- H (dot-dashed line), G- H + V (long dashed line).
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FIG. 10. drI',/dt comparison for an impulsively started circular cylinder, at-R850: KL-like (solid line),
G (dotted line), G+ V (dashed line), G+ H (dot-dashed line), G- H + V (long dashed line).
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FIG. 11. dI',,/dt comparison for an impulsively started circular cylinder, at-R850: KL-like (solid line),
G (dotted line), G+ V (dashed line), G+ H (dot-dashed line), G- H + V (long dashed line).

As mentioned above, our general method cannot, at the same resdiutiprbe expected

to be as good as the body-fitted method. A convergence analysis of th¥ &ethod is
thus carried out. Two simulations of the same flow are made: ohglt= 6.03 x 1073,
AT =0.01, and one ah/D = 3.015x 10°3, AT = 0.025. Thus, both have the same
vAt/h? = 1/2. Figure 14 shows that the GV method indeed converges well: The values
of Iy andCp obtained with the smalldr/D are remarkably close to the analytical values.
The other schemes were also tested and shown to converge.

4.2. Re= 3000

The parameters of the simulations @& = 0.005 anch/D = 1.87 x 10-3. There are
1944 panels, the number of particles goes fre20,000 to~500,000, and the total run
time is approximately 60 h on a DEC alpha running at 533 Mhz.

The short-time comparison ¢f indicates, once again, that, at the same resolutiph)(
the body-fitted KL-like method works slightly better and that the G ang 8 methods
work better than the G- Hand G+ H + V ones. For longer times, all four general methods
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FIG.12. Isocontours of vorticity foll = 1, 3, and 5 for an impulsively started circular cylinder, atR&50:
KL-like (left), G + V (right). Levels are by steps of 2 (zero level is skipped).

work equally well, so only the results from the-6V method are shown in Fig. 15, along
with those obtained using the KL-like method.

Figure 16 illustrates the results for the drag coeffici€y, Once again, the results of
all four general methods are very similar. However, for-R8000, there are slight but
noticeable differences in the long-tirly computed with the KL-like and G- V methods.

Half the total production of circulation (Fig. 17) does not allow us to distinguish th
different method as easily as for the Re550 case. There are, however, small difference
that seem to indicate that the 6V method works best, but it is not as clear as for the
Re = 550 case. The G and 6 H methods give results very similar and are not shown.

Figure 18 shows a comparison of the iso contours of vorticity for the KL-like an
G + V methods. Although the agreement is very good, there are some differences betw
the two methods, and they increase with time.

Figure 19 compares the 48 first modes of the vortex sheet'’s strehgthgt T = 1 and
T = 5forthe KL-like and G+ V methods. It also shows the “filtered” strength of the vortex
sheet (obtained through an inverse Fourier transform of the 48 first coefficients) at the s
times. The agreement between the two methods is very good; the small differences are |
noticeable at the local extrema.
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FIG. 13. Comparison of the vortex sheet’s strength for an impulsively started circular cylinder-at336:
16 first Fourier coefficients a = 1 (top left) andT = 5 (top right), KL-like ) and G+ V (O); filtered strength
of the vortex sheet as a function®fr atT = 1 (top left) andT = 5 (top right): KL-like (solid line) and G+ V
(dashed line).

5. FLOW PAST AN IMPULSIVELY STARTED CYLINDER
AT NONUNIFORM RESOLUTION

The aim of this section is to validate the “adaptive” part of the vortex method, that |
the fact that particles having, at each redistribution, a fluid &eah? and a smoothing
parametet = gh, varying slowly in space, allow one to perform an accurate simulatio
at a reduced computational cost. To concentrate on only that part of the validation st
one has to consider the flow past a circular cylinder together with the exponential mapp
with the center of the mapping being located at the center of the cylinder. This is thu
KL-like method but with nonuniform resolution.

Two sets of simulations have been performed:=R850 and Re= 3000. For each set,
the linear impulse]y, the drag coefficientCp, the half total production of circulation,
dI'yp/dt, and the iso contours are compared with the results from the KL-like method wi
uniform resolution.

5.1. Re=550

The parametem for the exponential mapping im = 592, that is, the number of panels.
All the other parameters are the same as those used in Section 4.1.

Figures 20 and 21 show that the nonuniform method gives results very similar to the
obtained with uniform resolution. The evolution of the number of particles in the tw
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FIG. 14. Convergence of, for the G+ V approach (top) and ofp (bottom) for an impulsively started
circular cylinder, at Re= 550: analytical (solid linefy/D = 6.03 x 103, AT = 0.01(+);h/D = 3.015x 1073,
AT = 0.025(%).

methods is shown in Fig. 28. For longer times, thendCp curves, although very close,
show some differences. In fact, the uniform-resolutior-& method (Section 4.1) gives
slightly better long-time results than the nonuniform KL-like method. This is due to tt
decreasing resolution as one goes downstream. The half total production of circulatio
shown (Fig. 22) to give very similar results whether one uses the uniform or the nonunifc
KL-like method. In this regard, the results from the nonuniform KL-like method are slightl
better than those of the uniform-6V method. This is due to the way particles are arrange
near the body. In the KL-like methods, particles “follow” the body. The particles from th
“first layer” are at a distanch/2 from the body surface, and the vortex sheet generate
at the surfaceAy, is a smooth function. In the general redistribution methods, howeve
particles may come very close to the wall. This leads 2gethat is noisier. SincdI",p/dt

is directly computed fromh\y (and is thus a “local” rather than “global” diagnostic), it
explains why the KL-like methods, even with a coarser resolution downstream, give be
results for the half total production of circulation. Figure 23 shows that the iso contours
the uniform and nonuniform KL-like methods compare very well.
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FIG.15. |, comparison for an impulsively started circular cylinder, attR8000. Short time (top): analytical
(solid line), KL-like (), G (+), G+ V (O), G+ H (O), G+ H + V (A). Long time (bottom): KL-like (solid
line), G+ V (dashed line).

5.2. Re= 3000

This time, the parameten equal to the number of panelsris= 1944. All other param-
eters are the same as those used in Section 4.2.

Figures 24, 25, 26, and 27 illustrate the performances of the nonuniform method
Re = 3000. The conclusions are similar to those presented in Section 5.1. The main p
of interest of the nonuniform method—its use of much fewer particles for a similar accure
in the vicinity of the body—is illustrated in Fig. 28.

6. FLOW PAST AN IMPULSIVELY STARTED SQUARE
AT NONUNIFORM RESOLUTION

In this section, the flow past an impulsively started square at an angle of attacks’,
is computed, taking advantages of both the general redistribution technique, which allc
one to redistribute particles near bodies of general geometry, and the nonuniform sche
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FIG.17. drI'y,/dt comparison for an impulsively started circular cylinder, atzR8000: KL-like (solid line),
G + V (dashed line), G+ H + V (long dashed line).
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FIG. 18. Iso contours of vorticity forT =1, 2, 3, and 4 for an impulsively started circular cylinder, at
Re = 3000: KL-like (left), G+ V (right). Levels are by steps of 4 (zero level is skipped).

The combination of these two powerful techniques makes it possible to compute this fl
up to times that a uniform-resolution technique could not reach.

Two runs of this flow were performed. Both correspond to a Reynolds number Re
U..c/v = 100, wherec is the length of a side of the square, but the parametgng, and
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FIG.19. Comparison of the vortex sheet’s strength for an impulsively started circular cylinder-at3Re0:
48 first Fourier coefficients dt = 1 (top left) andT = 5 (top right), KL-like () and G+ V (O); filtered strength
of the vortex sheet as a function@fr atT = 1 (top left) andT = 5 (top right): KL-like (solid line) and G+ V
(dashed line).

m of the mapping are different. These three parameters enable one to control the variatic
the resolution in space. Indeed, the typical distance between patticlesies ah = %’r,
wherer? = (x — Xg)? + (Y — Yo)2. The first run, hereafter referred to 8 hasm = 300
and (X, Yo) = (0, 0). For the second rur, the values of these parameters are- 850
and (Xo, Yo) = (—2.5, —0.67). Both runs haveR, = 0.5. These two mappings lead to the
same value oh at the lower-left corner of the square;0.5, —0.5). Figure 29 illustrates
the two mappings corresponding $ and S, where, for clarity of the figure, the values
of m have been divided by 2. Figure 30 shows the position of particl&s-at0 and the
cells of the mapping (this time with the true valuesngf The other parameters, common
to S andS,, areAT = 0.01 and the use of Gaussian particles vtk 1. Each side of the
square is divided into 72 panels. However, the corners of the square have to be “roun
to avoid numerical problems. This is done by replacing the two panels at a corner by f
smaller panels whose ends are on a circle of radius equal to the length of a panel.

For the panels to be able to diffuse their vorticity correctly it is essential to have enot
particles around the body during the course of the simulation. The presence of a laye
n, particles is enforced after each redistribution and also before the first time step in
following way: For each positiofi, j) of the redistribution lattice in the mapped domain,
a square centered &t, j) and of side of length @ + 1 is considered. If any position
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FIG. 20. 1, comparison for an impulsively started circular cylinder, atR650. Short time (top): analytical
(solid line), uniform KL-like ), nonuniform KL-like (x). Long time (bottom): uniform KL-like (solid line),
nonuniform KL-like (dashed line).

(i +k,j+D,with (k1) in[—n, n] x [—n, n], falls inside the body, the presence of a
particle at position(, j) is guaranteed.

A redistribution is performed every five time steps, and the presence of a layer of
particles around the body is enforced. When one uses the nonuniform scheme for long-
computations, it is no longer valid to delete new particles With< ¢|I"|max because,
for long-time simulations|I"|max COrresponds to a particle located in the far wake, whos
circulation might be very large because the surface associated with that particle is very la
A better approach consists in deleting all particles With< &|I"|maxand|T"| < Cysh (i.€.,
satisfy both a relative criterion and an absolute criterion). For short times, the first criter
will be effective, and for long times, itis the second one that will come into play. To choose
appropriate value fdrsp, One has to consider the mesh Reynolds number based on vortici
Re, = |w|h?/v. Since particle strengths correspondte= wh?, we have Rg = '—5‘ Tests
have shown that a “good” value fdk,s, corresponds to Rgrsh = Iysh/v = 1074, Thus,
particles for which the “mesh” Reynolds number is really very low are deletedSFamd
S, the valued sy = 10~* v ande = 10~* were used. All the others parameters are simila
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FIG.21. Cpcomparison for animpulsively started circular cylinder, aERB50. Short time (top): analytical
(solid line), uniform KL-like ), nonuniform KL-like (x). Long time (bottom): uniform KL-like (solid line),
nonuniform KL-like (dashed line).

1.0 T T T T

0.0 L L L L

FIG. 22. dI'y,,/dt comparison for an impulsively started circular cylinder, at=R850: uniform KL-like
(solid line), nonuniform KL-like (dashed line).
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FIG. 23. Isocontours of vorticity fol = 1, 3, and 5 for an impulsively started circular cylinder, atR&50:
uniform KL-like (left), nonuniform KL-like (right). Levels are by steps of 2 (zero level is skipped).

to those presented in Section 4.1. Figure 31 shows the evolution of the drag coefficient
of the number of particles fdg andS,. These two runs have Re- 1 close to the wall, but
the evolution of the resolution varies differently in space for the two methods. At the end
the simulations, the maximum value of{Reorresponding to the far-wake particles}25

for S and~11 for S. This means that the far wake is under-resolve§ibut has a better
(and fair) resolution ir,. This under-resolution of the far wake is, of course, controlabl
by displacing the centeixg, Yo) of the redistribution lattice. This is precisely what was
done inS,. The centel(xg, Yo) can be further modified. Iso contours of vorticity from the
simulationS, are shown in Fig. 32; they correspond to a region close to the body whe
Re, < 2. Figure 33 shows isocontours even closer to the body, alsg fditustrating the
fine resolution.

7. FLOW PAST AN IMPULSIVELY STARTED 2-D “APOLLO” CAPSULE

In this section, the flow past an impulsively started 2-D “Apollo” capsule of geners
shape is considered. The justification for the study of such a 2-D flow can be found
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FIG. 24. 1, comparison for an impulsively started circular cylinder, aR8000. Short time (top): analytical
(solid line), uniform KL-like ), nonuniform KL-like (x). Long time (bottom): uniform KL-like (solid line),
nonuniform KL-like (dashed line).

Wanag, et al.[17]. This geometry offers the opportunity to compute the flow past a boc
whose geometry is not trivial. The Reynolds number issR€,,D /v = 1500, whereD is
the width of the capsule. The angle of attack i§,4hd the time step IAT = 0.005. The
mapping used for the computation is centeredxat yo) = (—0.6, 0) and hasn = 1000.
This is illustrated in Fig. 34, where the valne= 200 has been used for clarity of the
figure. Figure 34 also shows the initial position of the particles along with a closeup
the mapping drawn, this time, witihh = 1000. In the course of the simulation, the numbel
of particles grows from~15,000 to~108,000. All the other parameters are the same ¢
those used in Section 6. The evolution of the drag and lift coefficients is shown in Fig. :
It is interesting to note the mean valugs = 1.91, C, = 0.69, and St= fD/Uy =
0.135, the Strouhal number for vortex shedding. These are in good agreement with tt
obtained in tests of the same 2-D configuration in a water tunnel (O. Karatekin, 20
private communication). Isocontours of the vorticity are shown in Figs. 36 and 37. In t
domain shown in Fig. 36, the “mesh” Reynolds number,,Reeverywhere less than 75.
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FIG.25. Cpcomparison for animpulsively started circular cylinder, aER8000. Short time (top): analytical
(solid line), uniform KL-like €), nonuniform KL-like (x). Long time (bottom): uniform KL-like (solid line),
nonuniform KL-like (dashed line).
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FIG. 26. drI',,/dt comparison for an impulsively started circular cylinder, at=R8000: uniform KL-like
(solid line), nonuniform KL-like (dashed line).



VISCOUS FLOW PAST BLUFF BODIES 385

s

o s o 05 T 15 2 I 05 o o5 T 5 2

FIG. 27. Iso contours of vorticity forT =1, 2,3, and 4 for an impulsively started circular cylinder, at
Re = 3000: uniform KL-like (left), nonuniform KL-like (right). Levels are by steps of 4 (zero level is skipped).

The right part of the graph is thus underresolved. However, in the region covered by Fig.
Re, is always less than 6, this value being reached argdnd) = (—1.1, 0.2), where the
vorticity magnitude is very high. The fact that relatively high values gf &te reached in the
far wake means that, in this region of the flow, the Navier—Stokes equations are not sol
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FIG. 28. Evolution of the number of particles as a function of time for an impulsively started circular cylinde
Re = 550 (top): uniform KL-like (solid line), nonuniform KL-like (dashed line); Re3000 (bottom): uniform
KL-like (solid line), nonuniform KL-like (dashed line).
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FIG. 29. The two redistribution mappings for the flow past a square; 150, (X0, Yo) = (0, 0) (left); m =
425,(Xo, Yo) = (=25, —0.67) (right).
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of particles (bottom) fofS, (solid line) andS; (dashed line).

Flow past a square at 1and Re= 100: evolution of the drag coefficient (top) and of the number
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FIG. 32. Flow past a square at 1and Re= 100 usingS; redistribution lattice: iso contours of vorticity for
T =10, 20, 30, 40, 50, 100 (top to bottom, left to right). Levels are by steps of 0.5.

accurately. The far-wake computation should thus be viewed as a kind of “outflow bound
condition.”

8. STRAIGHTFORWARD PARTICLE REDISTRIBUTION

A redistribution technique, which is simpler than the one presented in Section 3.5, v
suggested by one of the reviewers of the present paper.

In this approach, straightforward redistribution is applied to all the particles (using, sa
Az scheme), and newly created particles that would fall into the body are deleted. In gene
such an approach does not conserve any moment of the vorticity field, but the revie
suggested that it could be plausible that the crude treatment given to particles close tc
boundary “only provides the overall vortex scheme with some artificial boundary conditi
that the vortex sheet algorithm corrects afterwards by injecting in the fluid the right amo
of vorticity.”

This redistribution technique will be referred to hereafter as SF, and the overall vor
scheme using SF for the redistribution will be named-GF. The new scheme has been
tested on two problems:

o the flow past an impulsively started cylinder, at R&50;
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FIG. 33. Flow past a square at 1and Re= 100 usingS, redistribution lattice: iso contours of vorticity for
T = 100. Levels are by steps of 0.5.

e the flow past an impulsively started square, at=R&00, angle of attack of X5and
nonuniform resolution.

8.1. Flow Past a Cylinder

The flow past a cylinder, at Re 550, is used to test the SF scheme. All the numerice
parameters of the simulation are the same as those used for the same flow in Sectior
Because of the symmetry of this flow, the vorticity is an odd functiog,of

o(X, —y) = —o(X,Y). (51)

Consequently, using the SF scheme does not change the total vorticity of the flow: if a ne
created particle witly > 0 falls inside the body (and is thus deleted), another particle, wit
y < 0 and vorticity of opposite sign, is also deleted. The two errors cancel each ott
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FIG. 35. Flow past an “Apollo” capsule at 4@nd Re= 1500: evolution of the drag coefficient (top) and lift

coefficient (bottom).

<
85

30‘: 5
S ERRERSRR
RSERREISIH S
SSSISIK
S

55
SRS
USRS
R
SR

15 20 25 30 35

s
SERKES

%

5

S

5
S 0,
SRR

SRS
SRR
RS

30 :&

5
S5
KK

S etase!
%S
655

5
S
D508
<X <
esiele
S5

%
Souietees
S

55

K

0%
<5

X

o




VISCOUS FLOW PAST BLUFF BODIES 391

,
Sk i

-2

FIG. 36. Flow past an “Apollo” capsule at 4&nd Re= 1500: iso contours of vorticity af = 35. Levels
are by steps of 2.

However, the linear impulsé, = [, yo d<2, will be affected, sincgw is an even function
of y. This is illustrated in Fig. 38, where the methods G angt GF are compared for both
short and long times. The jumps that occur in the curves every five time steps are du
SF not conserving the first order of the vorticity field. The drag coefficients from the tv
methods are compared in Fig. 39 (the spurious data in the linear impulse have been rem
prior to the numerical differentiation).

Itis seen that methods G andHGSF give very similar results on this flow. This indicates
that the vortex sheet algorithm performs remarkably well in helping the method reco
from the crudeness inherent in SF.

8.2. Flow Past a Square

The flow past a square at Re 100, with angle of attack 25and nonuniform resolution,
is now considered, using the same parameters as those used f@rafiBection 6. The
nonzero angle of attack makes this flow nonsymmetric; the use of SF will therefore moc
the total vorticity.

Methods G and G- SF have been used to compute this flow. The resultant drag coe
cient,Cp, has been plotted in Fig. 40. It is hardly possible to see any difference betwe
these two curves, which indicates, once again, that the vortex sheet algorithm makes a
good job at correcting the spurious effects of SF.
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FIG. 37. Flow past an “Apollo” capsule at 4Gnd Re= 1500: iso contours of vorticity af = 35. Levels
are by steps of 4.

9. CONCLUSIONS

e A technique to redistribute particles in the presence of bodies of general geome
was developed and validated. It uses a combination of high-order redistribution scher
thereby conserving the total vorticity, the linear impulse, and the angular impulse.

e A modified patrticle strength exchange (PSE) scheme was used near the solid bot
aries: it uses image particles to guarantee a zero vorticity flux at the boundary during
PSE substep.

e The no-slip boundary condition is enforced in two steps: a vortex sheet that canc
the slip velocity is first computed; it is then diffused onto nearby particles. The diffusic
scheme presented herein is a more accurate version of the original method develope
Koumoutsakost al.[8]. It makes the method conservative (i.e., it guarantees that the vort
sheet is now exactly diffused into the flow). Notice that, besides its being of interest frc
the point of view of accuracy, the new scheme has the additional property that it allows «
to perform under-resolved simulations that still have the proper global vorticity flux frol
the boundary.

e Amapping ofthe redistribution lattice was integrated into the present method, makin
possible to compute the far wake of bluff-body flows with a coarser, controllable, resolutic
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FIG. 38. I, comparison for an impulsively started circular cylinder, atzRB50. Short time (top): analytical
(solid line), G &), G + SF (A). Long time (bottom): G (solid line), G SF (dashed line).

e The flow pastanimpulsively started circular cylinder was used to validate the “gener
method with uniform resolution. It was shown that the new general method performs sligt
better if small random “vibrations” are applied to the particle redistribution lattice. It was al:
shown that, at the same resolution, it performs almost as well as the body-fitted metho
Koumoutsakos and Leonard [9]. This result is very encouraging. In addition, a converge
study of the general method was also carried out (in which the spatial resolution v
increased and the time step decreased).

e The general method with nonuniform resolution was validated on the same flow,
lustrating the interest of using particle redistribution on a nonuniform lattice. Significan
reduced computational cost for a similar level of accuracy was obtained.

e Forthe case with nonuniform resolution, and thus nonuniferthe PSE was modified
to be performed in physical space while remaining conservative. The quadratic converge
of the modified scheme was proved mathematically and supported by numerical tests.

e The flow past an impulsively started square at-R&00 andx = 15° was computed.
The combination of the general method with the mapping made it possible to simulate
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FIG.39. Cp comparison for animpulsively started circular cylinder, atRB50. Short time (top): analytical
(solid line), G &), G+ SF (). Long time (bottom): G (solid line), G- SF (dashed line).
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FIG. 40. Flow past a square at 1&nd Re= 100: evolution of the drag coefficient (top) for G (solid line) and
G + SF (dashed line).
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flow up to T = 100. If it were to be performed at uniform resolution, such a simulatio
would require an extremely large number of particles. It was also shown that the parame
of the mapping can be used to control the resolution both near the body and in the far w

e The flow past a generic 2-D “Apollo” capsule at Re1500 andx = 40° was used to
demonstrate the capability of the method to compute flows past bluff bodies of truly gent
geometry for extended times (= 35).

e Avery simple particle redistribution technique, suggested by one of the reviewers, v
also tested. Although it lacks a sound theoretical basis and relies heavily on the robust
of the overall vortex scheme (especially the vortex sheet algorithm), it performed very w
on the flows upon which it was tested.

APPENDIX A

Proof of the Convergence of the PSE with Variable Core Size

In 2-D, the particle strength exchange scheme is based on the approximation of
Laplacian operator by the integral operator

gifgf ~ % /(f(y) - f(x))n('ya '); (A1)
with 7 (|z|) a radially symmetric function such that
/n(IZI) dz=1 (A.2)
/ZiZjT](|Z|)dZ: 8ij (A.3)
/ n(z)) 12)* dz < . (A.4)

Equation (A.1) is accurate to second order. To show that, we consider a Taylor expan:
of f aroundx,

fx) 102f(x) ‘ 1 03f(x)
f(y) = f(X)+—(Y| - |)+§3 (y| X)(Yj — X)+6m
C— X)) (Y — X X 04109 ) x| A5
X (i = X)) — X)) (¥ — k)+m (ly — I, (A.5)

with implicit summation on the repeated indices (here running from 1 to 2). If Eq. (A.5)
introduced in EqQ. (A.1), and the radial symmetrynak taken into account, one finds

—/(f(y)— f(X))n<|y '> =

2 4
L T T < / IZ|4n(Z)dZ>

9% 0X; 0% 0Xj OXkIX|
92 f (x 9% f (x
_ T, T
3Xi3Xj 3Xi8Xj3Xk3X|
02 f a4 f
_ e | 9 o©?) (A.6)

0% 0X%; 3Xi3Xj3Xk3X|
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withz = (y — X) /o . The replacement of the Laplacian operator by Eq. (A.1) is thus secon
order accurate for uniform.

Let us now investigate the influence of a nonunifarmif one replaces by o (x) in
Eg. (A.1), the approximation error 8(c?(x)), but the discretized scheme is not conser-
vative.

Another possibility is to replace by o (y) in Eq. (A.1):

P2Ex) 1 ly — x|\ _dy
X% D% _Z/Uz(w(f(y) - f(x))n( o(y) )Gz(y)' A7)

Note that, in this equatior;? can also be taken ag = (o2(x) + o2(y))/2, which leads
to a conservative discrete scheme. This is what is done in the implementation used in
paper.
It will now be shown that Eq. (A.7) is still second-order accurate. First, one defines
y —X

zZ= ) = z(Yy, X) (A.8)

and assumes thatcan be recovered from andz; i.e.,y = y(X, 2). In Eq. (A.7), it is
necessary to useas the integration variable. One has

dz = Jdy, (A.9)

whereJ is the jacobian of the coordinate transformation

0z,
J=Jy) = det(), (A.10)
dYj
with
0z 1/1— 20,0 —2Z,000
—(y) = — A1l
ay (y) o ( —20010 1-— 22320'> ( )
0z 1
8_ylj = ;(5”‘ — Zdj0), (A.12)

wheredioc = do/dy;. Hence, one has, for the jacobian,
1
J= ?(1 — Zxko). (A.13)

The transformation can be inverted to give

8y o 1— 2,000 21020
() = ( > (A.14)
0z 1— zoko 22010 1— 20,0
which can be written in a more condensed form,
a A
M__ (A.15)

= o — 5 _Y%j,
32] 1— zoko
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with
1-20 Z10
- 2020 A0 ) (A.16)
22010 1-—20.0
A useful property oty; is
djoaj = 0jo. (A.17)

The terms of Eq. (A.5) are now introduced into Eqg. (A.7). One has

/ ! (f(y)—f(X))rl(w_X') dy =11+ lo+ I3+ g, (A.18)

o2(y) a(y) Jo?(y)
with
I, = 28;;)() / e imamo)zm(|z|)dz (A.19)
2= g;fa(:? / 1 Ziama)zizm(lzndz (A.20)
I3 = ;aji:(?;)xk / 1 ;ama)zi zjz«n(|z|) dz (A.21)
Iy = %0(/ %nqwzﬁdz), (A.22)

wheres has been written instead 61X, z). In what follows,o will be written as

y

o(y) = 69(E> = €g(¢), (A.23)

with L a global length scale argl(¢) a smooth function witly({) = O(1). Because of the
smoothness dj, all its derivatives are als@(1). Consequently, one has

o =0 = L(’)(E) (A.24)

9o _ 09 9%
oY 3¢ Ay,
€ a9 €
_€99 _ (< A2
L ¢ O('—) (A.25)
2
aizjg=i g %
L 9598 dY;j

e 9%g 1 (e
= Cacar = EO<E)‘ (A.26)

aiO'Z

All the 1;’s will now be developed arounzi= 0 (i.e., aroundy = x).
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I Term
One defines

1
Ty — KL —
Kly) =K'= A—z90) (A.27)

and performs a Taylor developmentiéf aroundz = 0:

aK?! 1 9%K?
Klov) = KL, 7 4= 77
(y) |270+ 3z, o i + 282iazj o i £]
1 33K? 94Kt
+ i zZjzc+ ———————|  O(zZh. (A.28)
607 0Zj 0Z |,_g 02 0Zj 02 07 |,_g
The first term,
1
Kllmo==] (A.29)
y=x

does not contribute tb, because of the radial symmetrypfThe first derivative oK ! is

oK1 aK1 ay;
_ 0ROV (A.30)
0Z; 3yj 9z
with
aK?! 1 9Zm
= [ 9j0(1— znd — e — Zmd>:
aYj 02(1 — o )? ( jo " mUH—U( ayj mo. A m,0'>>
1 1 2
:_W. 0j0 (1 —Zmdmo) +o —;(8mj—zm81-0)8mo—zm8mjo
1

iy (80 = It = b0 + oo ing ~azmidio

=0

(A.31)
Zm8r2njo
=—. A.32
o (1 — z,0¢0)? ( )
Hence, from Eq. (A.15) and Eq. (A.30), one finally finds
oK1 ar%,jo'aji Zm
= A.33
07 (1 — Zk3k0‘)3 ( )
and
aK?
— =0. (A.34)
325 z=0

It is interesting to observe that

K= 10(5) (A.35)
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and that the application of the operaty®oz multiplies the order by /L. If the two djo
terms in Eq. (A.31) had not canceled each other, one would have obtained

oKt 1

—=—-0(0), A.36

7 = 10w (A.36)
even forz = 0, andl; would not vanish as/L tends to zero, thereby making Eq. (A.7) a
nonconvergent approximation of the Laplacian operator. However, because of the car
lation of thed;o terms in Eq. (A.31), one actually obtains

K1 1 €
=-0(—). A.37
9z L © ( L ) (A-37)
Consequently, one also obtains
32K ! 1 2
= —(9(<5> ) (A.38)
0Z; 32] 2=0 L L
33K1 1

0 LO((EY) (A.39)

Because of the radial symmetry gfEq. (A.38) does not contribute 1@, which is finally

obtained as
af 1 e\’ [, af 1 e\®
'l—a—xito(<t> G ’“'Z'“’Z) _8_xifo<(f> ) (A40)

where Eqg. (A.4) has been used to obtain the last result.

0z 8ZJ' 02

I, Term

One defines

1
K2(y) = K?=0oK!=

= a5 (A.41)

and performs a Taylor development aroung O:

aK? 1 9%K? 3K 2
KZy)=K?3| +—| z+-—r| z2Z+———| 0O(z®). (A42)
0 9Z |, 2070z; |, 020202 |,_g
One obtains
K?|,m0 = 1. (A.43)

The first derivative is obtained as

aK?2 1 5 S 52 o O
= — —8imOmo — o——
9z (1 — zdo)? 1mem momn 9z

= = Ko + Zmd? 7 o) (A.44)
o (1—Zk3k0’)2 i m mnO‘.'L—Z|3|(TO(nI ’ '
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hence, ay = x, one has

K2
0Z

= 30 ly—x, (A.45)
z=0

which does not contribute @, because of the radial symmetrypfTo compute the second
derivative, it is convenient to define

o
F. — g2 R A.46
1T A= z0) ™ (A.49)
so that
K2 1
= 0i Fmi), A.47
3z, 1- Zk8k6)2( io + ZmFmi) ( )
and the second derivative &2 is
9°K* 2 8ki 0 202 9Ys (0i0 + 2, Fni)
= — —0kj ko — o
32@821' (l—Z|3|O’)3 kj Ok kOksO 8 Z; i n Mni
1 3yk 0 Fmi
— (82 SmiFmi + 2 A.48
+ (1—Z|3|0)2 ( IkGaZJ + mjFmi + Zm 97 J ) ( )
Taking into account that, when= 0 (y = x),
i = &ij (A.49)
Vi
ﬁ = 0’5”' (A.50)
Fij = O‘aﬁo‘&j = O‘aizja, (A.51)

one finally obtains

92K 2
9z 82,-

= 2(0j0 ly=x3i 0 ly=x) + (U|y=x8i2k(7|y=x3kj + U|y=x8j2i U|y=x)
z=0

=2 (aj0|y:x3i(7|y:x + U|y:x8i2j0|y:x)

(7))

where the last result has been obtained from Egs. (A.24), (A.25), and (A.26). It is th
possible to writd, as

32f 82f 2
2= a0 [azmaaaz+ i 00((£) [itaozndz)

0% 0X; 9% 0X;

32 (x) 32 f (x) e\?
= d <

oxax, ) AAnUE Gz 5oy O((L) )

92 (%) e\?
= XX (1+(9<L> ) (A.53)



VISCOUS FLOW PAST BLUFF BODIES 401

I3 Term
One defines
o
K3y)=K3=0oK?= ——— (A.54)
1-— z,0mo
and performs again a Taylor expansion aromrgd O:
3K3 2K3
K3y)=K3 +—| z+ O(z?. A.55
Y z=0 9Zi |, 9Z0Zj |9 ( )
One has
K3|z=0 = 0ly=x, (A.56)

which does not contribute tiy because of the radial symmetrypfThe first derivative of
K3is

K3 1 5 ay;j (1= 2080
= Lo — — o
9z (1-280)2\\""" 0z e
aYj
2 )
—0 (—(Simama — Zmaij'a—Zi)), (A57)
and, aty = x:

K3
o = c7|y=><8jC7|y=><5ij - U|y=x(_ai0|y=x)
aZi 7=0

= 20|y:xai0|y:x

2
_ LO<(6> ) (A58)
L
where the last result is obtained from Eqgs. (A.24) and (A.25). Using Eq. (A.4), one fina
obtains
33 (x) e\? .
=— "7 1 — d
5% 9%, 0% 0(<L) /n(IZI)IZI Z>

%X e\?
= WLO((L) ) (A59)

3

4 Term

Starting from Eqg. (A.22), one easily observes that

P, e\?
= S o - O((L> ) (A.60)



402 PLOUMHANS AND WINCKELMANS

Summary

It has been shown that
ly — x|\ dy
f A.61
/ o2y Y (X))"< oY) )a%y) (A-61)
af 1 e\%\  92fx e\ ?
B 8_)(ito(<t) )+ X X <1+O(E) )

33 (x) e\? It e\?
+ 3Xi3X18Xk LO((E) ) + 8Xian OXKOX| L O((E) ) (A.62)
Equation (A.7) thus defines a convergent, second-order-accurate approximation of
Laplacian operator.

The use ofo? = (6%(X) + 0?(y))/2 in Eq. (A.7) falls into the category of admissible
variation ofo, asithas the formm = o (y) (sincex s fixed in the analysis). Thus, it also leads
to a convergent, second-order-accurate approximation. Furthermore, this choitakés
the discrete scheme conservative. It is what was used in the numerical implementation

Finally, the analysis also shows that, whenrs uniform in space); = 13=0, I, =
V2 £ (x), andls is O((e/L)>?).

APPENDIX B

Numerical Convergence of the PSE with Variable Core Size

The convergence of the discretized PSE is illustrated on a test problem. A Gaus:
vorticity distribution,

ry= r ex —i (B.1)
w()_ZnaZ P\ 7222 ) '

with r? = (x — X.)? 4+ (Y — Ye)?, is used. The corresponding exact Laplacian,

2w [ 12
2

will serve as a reference for the comparison with an approximate value, computed usir
discretization of Eq. (A.7),

1 X X
V2 wij =2 g (a)pq wij) —n <M) Sogs (B.3)
S

with 1(2) = 1/(27) exp(—2%/2) ando? = (0% + 05) /2.

One considers the exponential mapping described in Section 3.63 withh. The domain
covered by the particles is a sector that completely bounds the disk of ¢gntey) and
of radiuspa, so that the domain whefw is significant is well covered by particles.

Here, the surface of each particle is given by

_sinh2z/m) ( (2 27i ZA s o2
= T enm ((F%)'exp(ﬁ)) M= (B4
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FIG. 41. Sketch of the situation for the numerical evaluation of the Laplacian of a Gaussian vortex.
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FIG. 42. Numerical approximation of the Laplacian. TdjE.| as a function of = ¢/a for § = 2 (dashed
line has a slope of 2). Bottontg,, as a function ok = ¢/a, for § = 2 (dashed line has a slope of 2).
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FIG. 43. Numerical approximation of the Laplacian, & 2 and« = 1/4. Top: iso contours o¥ 2w (levels
are by steps of 0.03) and cells of the mapping. Bottom: iso contouEs=6fVZw — V2w (levels are by steps of
0.003) and cells of the mapping.

with i = 0 corresponding t&. (see Fig. 41). Hence, one has

. 1/2

(27 /m) m
=B (Sinh(E/RO)>l/2 € ex (Ei> (B.5)
=\ /R R/ '

with € = % Ry. This is in the form used in Appendix A.
Two parameters are definetl= Ry/(pa) and« = ¢/a. The first one§, is a measure of
the distortion of the mapping over the region covered by the vortex, whiterelated to
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the quality of the discretization, as it measures the ratio between celhsjzt,the vortex
center, and physical problem size The center of the vortex correspondsitoj) = (0, 0);
thus,

X = Ro (B-G)
Ye =0. (B.7)

Figure 41 illustrates the problem. Tests have been rur$ fer2, 4, 8, 16, 32, 64 and
Kk =1,1/2,1/4,1/8. The vortex is normalized? = 1,a = 1; pis setto 4, and hence the
domain whereV?w is significant is here very well covered by particles. Two errors ar
computed for each run: the error at the center of the vortex (where it is maximum),

Ec = v§w|x=XC — Vio| (B.8)

X=Xc’
and the mean error,

_ 2 |Véwi — VieiS;

Zi,j Sj

Figure 42 illustrates the variations |d&;| andE, with « for the most severe cask= 2.
Itis seen that the method indeed convergesaas expected. The higher values¢vhich
correspond to less severe distortions of the mapping) lead to results that are almost iden
Isocontours ofV2w andE = V2w — V2w, for the caseé = 2 andx = 1/4, are plotted in
Fig. 43, together with the mapping used. Itis seenWai is almost axisymmetric and that
the error g, is also almost axisymmetric. This confirms the theoretical proof of Appendix /

Em (B.9)
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